Electromyogram (EMG) Signal Classification Based on Light-Weight Neural Network with FPGAs for Wearable Application

人工神经网络 计算机科学 现场可编程门阵列 特征提取 人工智能 可穿戴计算机 噪音(视频) 信号(编程语言) 离散小波变换 特征(语言学) 模式识别(心理学) 平滑的 小波变换 小波 计算机硬件 嵌入式系统 计算机视觉 语言学 哲学 程序设计语言 图像(数学)
作者
Hyun‐Sik Choi
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (6): 1398-1398 被引量:1
标识
DOI:10.3390/electronics12061398
摘要

Recently, the application of bio-signals in the fields of health management, human–computer interaction (HCI), and user authentication has increased. This is because of the development of artificial intelligence technology, which can analyze bio-signals in numerous fields. In the case of the analysis of bio-signals, the results tend to vary depending on the analyst, owing to a large amount of noise. However, when a neural network is used, feature extraction is possible, enabling a more accurate analysis. However, if the bio-signal time series is analyzed as is, the total neural network increases in size. In this study, to accomplish a light-weight neural network, a maximal overlap discrete wavelet transform (MODWT) and a smoothing technique are used for better feature extraction. Moreover, the learning efficiency is increased using an augmentation technique. In designing the neural network, a one-dimensional convolution layer is used to ensure that the neural network is simple and light-weight. Consequently, the light-weight attribute can be achieved, and neural networks can be implemented in edge devices such as the field programmable gate array (FPGA), yielding low power consumption, high security, fast response times, and high user convenience for wearable applications. The electromyogram (EMG) signal represents a typical bio-signal in this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研无止境w发布了新的文献求助10
1秒前
3秒前
奶油泡fu完成签到 ,获得积分10
3秒前
dong东包完成签到,获得积分20
4秒前
4秒前
ED应助cccccc采纳,获得10
4秒前
shangziru发布了新的文献求助10
5秒前
漠之梦完成签到,获得积分20
6秒前
sc完成签到,获得积分10
6秒前
谦让的含海完成签到,获得积分10
6秒前
好运連連完成签到,获得积分10
7秒前
9秒前
liu完成签到,获得积分10
9秒前
飞翔的霸天哥应助Yuanchaoyi采纳,获得30
10秒前
香蕉觅云应助WJH采纳,获得10
11秒前
汉堡包应助研友_LOoomL采纳,获得10
11秒前
小二郎应助Felix采纳,获得10
11秒前
zaphkiel完成签到 ,获得积分10
12秒前
健壮的囧完成签到,获得积分10
13秒前
torch132完成签到,获得积分10
14秒前
桐桐应助阿景采纳,获得10
15秒前
15秒前
震动的平松完成签到 ,获得积分10
15秒前
Ting完成签到 ,获得积分10
16秒前
16秒前
Hello应助王冉冉采纳,获得30
17秒前
Ava应助Jarvi采纳,获得10
17秒前
18秒前
19秒前
20秒前
一枚研究僧完成签到,获得积分0
20秒前
20秒前
赘婿应助科研通管家采纳,获得10
21秒前
英姑应助科研通管家采纳,获得10
21秒前
思源应助科研通管家采纳,获得10
21秒前
上官若男应助科研通管家采纳,获得10
21秒前
Jasper应助科研通管家采纳,获得10
21秒前
1351567822应助科研通管家采纳,获得30
21秒前
领导范儿应助科研通管家采纳,获得10
21秒前
合适的毛豆完成签到,获得积分10
22秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038569
求助须知:如何正确求助?哪些是违规求助? 3576279
关于积分的说明 11374944
捐赠科研通 3305979
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815048