Adversarial agent-learning for cybersecurity: a comparison of algorithms

计算机科学 对抗制 强化学习 人工智能 利用 机器学习 蒙特卡罗树搜索 多样性(控制论) 计算机安全 树(集合论) 蒙特卡罗方法 数学 统计 数学分析
作者
Alexander Shashkov,Erik Hemberg,Miguel Tulla,Una-May O’Reilly
出处
期刊:Knowledge Engineering Review [Cambridge University Press]
卷期号:38 被引量:6
标识
DOI:10.1017/s0269888923000012
摘要

Abstract We investigate artificial intelligence and machine learning methods for optimizing the adversarial behavior of agents in cybersecurity simulations. Our cybersecurity simulations integrate the modeling of agents launching Advanced Persistent Threats (APTs) with the modeling of agents using detection and mitigation mechanisms against APTs. This simulates the phenomenon of how attacks and defenses coevolve. The simulations and machine learning are used to search for optimal agent behaviors. The central question is: under what circumstances, is one training method more advantageous than another? We adapt and compare a variety of deep reinforcement learning (DRL), evolutionary strategies (ES) and Monte Carlo Tree Search methods within Connect 4, a baseline game environment, and on both a simulation supporting a simple APT threat model, SNAPT, as well as CyberBattleSim, an open-source cybersecurity simulation. Our results show that when attackers are trained by DRL and ES algorithms, as well as when they are trained with both algorithms being used in alternation, they are able to effectively choose complex exploits that thwart a defense. The algorithm that combines DRL and ES achieves the best comparative performance when attackers and defenders are simultaneously trained, rather than when each is trained against its non-learning counterpart.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助吴吧啦采纳,获得10
刚刚
1秒前
请叫我风吹麦浪应助alick采纳,获得10
1秒前
超级萌琦完成签到,获得积分10
1秒前
1秒前
一颗小白菜完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
6秒前
ersanli关注了科研通微信公众号
7秒前
reflux举报耶耶耶求助涉嫌违规
8秒前
BR发布了新的文献求助10
8秒前
丘比特应助微信研友采纳,获得10
8秒前
非盈完成签到,获得积分20
9秒前
深情安青应助科研小白采纳,获得10
10秒前
10秒前
陈陈发布了新的文献求助10
10秒前
Dr.完成签到 ,获得积分10
10秒前
10秒前
huanglu发布了新的文献求助10
11秒前
nanazi完成签到,获得积分10
11秒前
qc发布了新的文献求助10
11秒前
wanci应助Seldomyg采纳,获得10
11秒前
12秒前
希望天下0贩的0应助Ash采纳,获得10
12秒前
因一完成签到,获得积分10
12秒前
Owen应助悠咪采纳,获得10
14秒前
宋美美完成签到,获得积分10
15秒前
15秒前
沈剑心发布了新的文献求助10
16秒前
Ryan0824完成签到,获得积分10
16秒前
17秒前
冰柠檬完成签到,获得积分10
17秒前
iuuuuu发布了新的文献求助10
18秒前
18秒前
Dipsy完成签到,获得积分10
18秒前
19秒前
19秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553880
求助须知:如何正确求助?哪些是违规求助? 3129652
关于积分的说明 9383794
捐赠科研通 2828818
什么是DOI,文献DOI怎么找? 1555222
邀请新用户注册赠送积分活动 725923
科研通“疑难数据库(出版商)”最低求助积分说明 715331