Dosiomics and radiomics to predict pneumonitis after thoracic stereotactic body radiotherapy and immune checkpoint inhibition

无线电技术 肺炎 医学 放射性肺炎 放射治疗 放射外科 免疫疗法 肿瘤科 免疫系统 放射科 内科学 免疫学
作者
Kim Melanie Kraus,Maksym Oreshko,Denise Bernhardt,Stephanie E. Combs,Jan C. Peeken
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:13 被引量:14
标识
DOI:10.3389/fonc.2023.1124592
摘要

Pneumonitis is a relevant side effect after radiotherapy (RT) and immunotherapy with checkpoint inhibitors (ICIs). Since the effect is radiation dose dependent, the risk increases for high fractional doses as applied for stereotactic body radiation therapy (SBRT) and might even be enhanced for the combination of SBRT with ICI therapy. Hence, patient individual pre-treatment prediction of post-treatment pneumonitis (PTP) might be able to support clinical decision making. Dosimetric factors, however, use limited information and, thus, cannot exploit the full potential of pneumonitis prediction.We investigated dosiomics and radiomics model based approaches for PTP prediction after thoracic SBRT with and without ICI therapy. To overcome potential influences of different fractionation schemes, we converted physical doses to 2 Gy equivalent doses (EQD2) and compared both results. In total, four single feature models (dosiomics, radiomics, dosimetric, clinical factors) were tested and five combinations of those (dosimetric+clinical factors, dosiomics+radiomics, dosiomics+dosimetric+clinical factors, radiomics+dosimetric+clinical factors, radiomics+dosiomics+dosimetric+clinical factors). After feature extraction, a feature reduction was performed using pearson intercorrelation coefficient and the Boruta algorithm within 1000-fold bootstrapping runs. Four different machine learning models and the combination of those were trained and tested within 100 iterations of 5-fold nested cross validation.Results were analysed using the area under the receiver operating characteristic curve (AUC). We found the combination of dosiomics and radiomics features to outperform all other models with AUCradiomics+dosiomics, D = 0.79 (95% confidence interval 0.78-0.80) and AUCradiomics+dosiomics, EQD2 = 0.77 (0.76-0.78) for physical dose and EQD2, respectively. ICI therapy did not impact the prediction result (AUC ≤ 0.5). Clinical and dosimetric features for the total lung did not improve the prediction outcome.Our results suggest that combined dosiomics and radiomics analysis can improve PTP prediction in patients treated with lung SBRT. We conclude that pre-treatment prediction could support clinical decision making on an individual patient basis with or without ICI therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助袁来如此采纳,获得100
刚刚
1秒前
ZhangYi发布了新的文献求助30
2秒前
小林太郎应助苗条安莲采纳,获得20
2秒前
3秒前
Jasper应助小于采纳,获得10
4秒前
yzhang发布了新的文献求助10
5秒前
你是谁完成签到,获得积分10
5秒前
5秒前
今后应助猫猫小队长采纳,获得10
6秒前
Jason举报求助违规成功
7秒前
kingwill举报求助违规成功
7秒前
Jason举报求助违规成功
7秒前
7秒前
7秒前
酷波er应助杨枝甘露采纳,获得10
7秒前
8秒前
8秒前
CipherSage应助yjjh采纳,获得10
8秒前
聪明小黄发布了新的文献求助10
8秒前
科研通AI5应助hw041采纳,获得10
9秒前
酷波er应助木子李采纳,获得10
9秒前
9秒前
10秒前
wen发布了新的文献求助10
10秒前
星辰大海应助小蘑菇采纳,获得10
10秒前
科研通AI5应助qwer采纳,获得200
11秒前
11秒前
TH1223发布了新的文献求助10
11秒前
sodawater发布了新的文献求助10
12秒前
12秒前
MoGong应助72采纳,获得10
12秒前
迷路小丸子完成签到,获得积分10
13秒前
科研通AI5应助orange采纳,获得10
13秒前
14秒前
所所应助gzh123采纳,获得10
14秒前
14秒前
大漂亮完成签到,获得积分10
15秒前
15秒前
柯夫子发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Host Response to Biomaterials 2000
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553842
求助须知:如何正确求助?哪些是违规求助? 3129593
关于积分的说明 9383508
捐赠科研通 2828757
什么是DOI,文献DOI怎么找? 1555168
邀请新用户注册赠送积分活动 725867
科研通“疑难数据库(出版商)”最低求助积分说明 715320