A gradient optimization and manifold preserving based binary neural network for point cloud

计算机科学 点云 人工智能 人工神经网络 卷积神经网络 可扩展性 算法 模式识别(心理学) 数据库
作者
Zhi Zhao,Ke Xu,Yanxin Ma,Jianwei Wan
出处
期刊:Pattern Recognition [Elsevier]
卷期号:139: 109445-109445 被引量:1
标识
DOI:10.1016/j.patcog.2023.109445
摘要

With significant progress of deep learning on 3D point cloud, the demand for deployment of point cloud neural network on the edge devices is growing. Binary neural network, a type of quantization compression method, with extreme low bit and fast inference speed, attracts more attention. It is more challenging, but has greater potentiality. Most of the researches on binary networks focus on images rather than point cloud. Considering the particularity of point cloud neural network, this paper presents a novel binarization framework, which includes two main contributions. Firstly, a gradient optimization method is proposed to overcome the shortcomings of Straight Through Estimator (STE) commonly used in the back propagation of binary network training. Secondly, based on the analysis of manifold distortion caused by the binary convolution and pooling operations, we propose an optimized scaling recovery method to restore manifold for the convoluted feature, and also, a pooling correction method to improve the pooled feature's fidelity. Manifold distortion leads to the severe feature homogeneity problem, which brings trouble in generating features with sufficient discrimination for classification and segmentation. The manifold preserving optimizations are designed to introduce minimum extra parameters to balance the accuracy with the computation and storage consumption. Experiments show that the proposed method outperforms state-of-the-art in accuracy with ignored overhead, and also has good scalability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tw完成签到,获得积分10
刚刚
1秒前
赘婿应助张千万采纳,获得10
2秒前
蜜桃四季春完成签到 ,获得积分10
2秒前
希望天下0贩的0应助Alice采纳,获得10
2秒前
小北关注了科研通微信公众号
2秒前
北城栀子刂AZ完成签到 ,获得积分10
3秒前
11111发布了新的文献求助10
3秒前
山海完成签到,获得积分10
4秒前
平常雪柳发布了新的文献求助10
5秒前
852应助yyuu采纳,获得10
5秒前
7秒前
小林发布了新的文献求助10
8秒前
CodeCraft应助蚂蚁牙黑采纳,获得10
9秒前
10秒前
星辰大海应助11111采纳,获得10
10秒前
123应助lukybag采纳,获得20
11秒前
12秒前
慕云关注了科研通微信公众号
13秒前
13秒前
everglow完成签到,获得积分10
13秒前
14秒前
科研通AI2S应助疯狂的水香采纳,获得10
14秒前
14秒前
15秒前
科研通AI2S应助晚风采纳,获得10
15秒前
哈哈哈完成签到,获得积分10
16秒前
Singularity应助疯狂的思山采纳,获得10
16秒前
17秒前
慕青应助Penny采纳,获得10
17秒前
17秒前
无聊的生活应助伤心女大采纳,获得30
18秒前
摘星012完成签到 ,获得积分10
18秒前
19秒前
Lin发布了新的文献求助10
19秒前
共享精神应助孙皊采纳,获得10
20秒前
20秒前
20秒前
beituo完成签到,获得积分10
20秒前
yufanhui应助科研通管家采纳,获得10
20秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055112
求助须知:如何正确求助?哪些是违规求助? 2711905
关于积分的说明 7428965
捐赠科研通 2356735
什么是DOI,文献DOI怎么找? 1248250
科研通“疑难数据库(出版商)”最低求助积分说明 606641
版权声明 596083