A gradient optimization and manifold preserving based binary neural network for point cloud

计算机科学 点云 人工智能 人工神经网络 卷积神经网络 可扩展性 算法 模式识别(心理学) 数据库
作者
Zhi Zhao,Ke Xu,Yanxin Ma,Jianwei Wan
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:139: 109445-109445 被引量:1
标识
DOI:10.1016/j.patcog.2023.109445
摘要

With significant progress of deep learning on 3D point cloud, the demand for deployment of point cloud neural network on the edge devices is growing. Binary neural network, a type of quantization compression method, with extreme low bit and fast inference speed, attracts more attention. It is more challenging, but has greater potentiality. Most of the researches on binary networks focus on images rather than point cloud. Considering the particularity of point cloud neural network, this paper presents a novel binarization framework, which includes two main contributions. Firstly, a gradient optimization method is proposed to overcome the shortcomings of Straight Through Estimator (STE) commonly used in the back propagation of binary network training. Secondly, based on the analysis of manifold distortion caused by the binary convolution and pooling operations, we propose an optimized scaling recovery method to restore manifold for the convoluted feature, and also, a pooling correction method to improve the pooled feature's fidelity. Manifold distortion leads to the severe feature homogeneity problem, which brings trouble in generating features with sufficient discrimination for classification and segmentation. The manifold preserving optimizations are designed to introduce minimum extra parameters to balance the accuracy with the computation and storage consumption. Experiments show that the proposed method outperforms state-of-the-art in accuracy with ignored overhead, and also has good scalability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SC发布了新的文献求助10
2秒前
科研通AI2S应助宝林采纳,获得10
3秒前
完美毛豆发布了新的文献求助10
6秒前
怡然的怀莲完成签到 ,获得积分20
9秒前
历史雨发布了新的文献求助30
11秒前
12秒前
dudu10000完成签到,获得积分10
13秒前
知性的焦完成签到,获得积分20
13秒前
13秒前
天天快乐应助完美毛豆采纳,获得10
14秒前
敏感板栗发布了新的文献求助10
14秒前
17秒前
17秒前
19秒前
梨梨完成签到,获得积分10
21秒前
jianhan发布了新的文献求助10
22秒前
22秒前
Ava应助科研通管家采纳,获得10
22秒前
aldehyde应助科研通管家采纳,获得20
23秒前
汉堡包应助科研通管家采纳,获得10
23秒前
aldehyde应助科研通管家采纳,获得20
23秒前
852应助科研通管家采纳,获得10
23秒前
CAOHOU应助科研通管家采纳,获得10
23秒前
研友_VZG7GZ应助科研通管家采纳,获得10
23秒前
CAOHOU应助科研通管家采纳,获得10
23秒前
CAOHOU应助科研通管家采纳,获得10
23秒前
23秒前
小二郎应助科研通管家采纳,获得10
23秒前
CAOHOU应助科研通管家采纳,获得10
24秒前
半城微凉应助科研通管家采纳,获得10
24秒前
24秒前
CAOHOU应助科研通管家采纳,获得10
24秒前
24秒前
asdfqwer应助科研通管家采纳,获得10
24秒前
脑洞疼应助科研通管家采纳,获得10
24秒前
CAOHOU应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
CodeCraft应助科研通管家采纳,获得10
24秒前
搜集达人应助科研通管家采纳,获得10
24秒前
小蘑菇应助科研通管家采纳,获得10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966919
求助须知:如何正确求助?哪些是违规求助? 3512387
关于积分的说明 11162970
捐赠科研通 3247220
什么是DOI,文献DOI怎么找? 1793752
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804432