Optimized multi-hidden layer long short-term memory modeling and suboptimal fading extended Kalman filtering strategies for the synthetic state of charge estimation of lithium-ion batteries

荷电状态 平均绝对百分比误差 衰退 均方误差 卡尔曼滤波器 电池(电) 扩展卡尔曼滤波器 计算机科学 算法 控制理论(社会学) 工程类 人工神经网络 数学 统计 人工智能 物理 量子力学 功率(物理) 解码方法 控制(管理)
作者
Yanxin Xie,Shunli Wang,Gexiang Zhang,Yongcun Fan,Carlos Fernandez,Frede Blaabjerg
出处
期刊:Applied Energy [Elsevier BV]
卷期号:336: 120866-120866 被引量:27
标识
DOI:10.1016/j.apenergy.2023.120866
摘要

With the demand for high-endurance lithium-ion batteries in new energy vehicles, communication and portable devices, high energy density lithium-ion batteries have become the main research direction of the battery industry. State of Charge (SoC), as a state parameter that must be accurately evaluated by the battery management system, enables online safety monitoring of the battery operation, and prolongs its service life. In this paper, an improved algorithm based on multi-hidden layer long short-term memory (MHLSTM) neural network and suboptimal fading extended Kalman filtering (SFEKF) is proposed for synthetic SoC estimation. First, the battery external measurable information is captured. The battery real data properties are matched with the network topology without additional battery model construction, and the battery SoC is roughly evaluated using an MHLSTM network. Then, a suboptimal fading factor is inserted into the extended Kalman filter (EKF) algorithm for iterative recursion and adaptive handling to smooth the prediction results of the MHLSTM network and enhance the accuracy of state estimation, system stability, and generality. Three customized electric vehicle (EV) driving conditions datasets are categorized into training and testing sets to fulfill the efficient estimation of synthetic SoC by the fusion algorithm and solve the time series problem. Using the maximum error (ME), mean absolute error (MAE), root mean squared error (RMSE), and mean absolute percentage error (MAPE), the results show that the maximum bias of the fusion algorithm to estimate the synthetic SoC is limited to within 1.2%, even under the abrupt change of the system. It can converge to the real value quickly and maintains an excellent tracking capability for data changes, reflecting the high accuracy estimation capability and the robustness possessed by the system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天风完成签到,获得积分20
刚刚
zhaoyang发布了新的文献求助10
刚刚
1秒前
小二郎应助多久上课采纳,获得10
1秒前
2秒前
奥特曼发布了新的文献求助10
2秒前
冰冰子完成签到 ,获得积分10
3秒前
马楼发布了新的文献求助10
4秒前
leaolf应助可靠月亮采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
qiqi完成签到,获得积分10
7秒前
7秒前
黄林豪完成签到 ,获得积分10
7秒前
7秒前
7秒前
8秒前
难过的翎完成签到,获得积分10
8秒前
Lin琳完成签到,获得积分20
8秒前
9秒前
1111完成签到 ,获得积分10
10秒前
10秒前
10秒前
11秒前
11秒前
11秒前
13秒前
魇无月发布了新的文献求助10
13秒前
孤岛发布了新的文献求助10
13秒前
cc完成签到,获得积分10
13秒前
赘婿应助开朗的睫毛膏采纳,获得10
14秒前
14秒前
科研通AI2S应助敦敦采纳,获得10
14秒前
14秒前
三三发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
Owen应助炙热的天菱采纳,获得10
14秒前
浮游应助顺心凝天采纳,获得10
14秒前
明月完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602404
求助须知:如何正确求助?哪些是违规求助? 4011681
关于积分的说明 12419962
捐赠科研通 3691873
什么是DOI,文献DOI怎么找? 2035322
邀请新用户注册赠送积分活动 1068516
科研通“疑难数据库(出版商)”最低求助积分说明 953096