材料科学
碳纳米管
法拉第效率
阳极
拉曼光谱
锂(药物)
范德瓦尔斯力
电导率
极限抗拉强度
硅
纳米管
复合材料
电极
光电子学
物理化学
化学
医学
物理
光学
有机化学
分子
内分泌学
作者
Ziying He,Zhexi Xiao,Hongjie Yue,Yaxin Jiang,Mingyu Zhao,Yukang Zhu,Chunhui Yu,Zhenxing Zhu,Feng Lu,Hairong Jiang,Chenxi Zhang,Fei Wei
标识
DOI:10.1002/adfm.202300094
摘要
Abstract Silicon‐based anodes are considered ideal candidate materials for next‐generation lithium‐ion batteries due to their high capacity. However, the low conductivity and large volume variations during cycling inevitably result in inferior cyclic stability. Herein, a dry method without binders is designed to fabricate Si‐based electrodes with single‐walled carbon nanotubes (SWCNTs) network and to explore the different mechanisms between SWCNT and multiwalled carbon nanotubes (MWCNTs) as a conductive network. As expected, higher initial discharge capacity (1785 mAh g −1 ), higher initial Coulombic efficiency (ICE, 81.52%) and outstanding cyclic stability are obtained from the SiO x @C|SWCNT anodes. Furthermore, its lithium‐ion diffusion coefficient (D Li+ ) is 3–4 orders of magnitude higher than that of SiO x @C|MWCNT. The underlying mechanism is clarified by in situ Raman spectroscopy and theoretical analysis. It is found that the SWCNTs can maintain good contact with SiO x @C even under tensile stresses up to 6.2 GPa, while the MWCNTs lose electrical contact due to alternating compressive stress up to 8.9 GPa and tensile stress up to 2.5 GPa during long‐term cycling. Under such very large stresses, the more flexible SWCNTs and their stronger van der Waals forces ensure that SiO x @C still has good contact with SWCNTs.
科研通智能强力驱动
Strongly Powered by AbleSci AI