Pansharpening Using Unsupervised Generative Adversarial Networks With Recursive Mixed-Scale Feature Fusion

计算机科学 全色胶片 人工智能 特征(语言学) 多光谱图像 模式识别(心理学) 比例(比率) 特征提取 融合机制 图像分辨率 数据挖掘 融合 哲学 语言学 物理 量子力学 脂质双层融合
作者
Yuanyuan Wu,Yuchun Li,Siling Feng,Mengxing Huang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 3742-3759 被引量:14
标识
DOI:10.1109/jstars.2023.3259014
摘要

Panchromatic sharpening (pansharpening) is an important technology for improving the spatial resolution of multispectral (MS) images. The majority of the models are implemented at the reduced resolution, leading to unfavorable results at the full resolution. Moreover, the complicated relationship between MS and panchromatic (PAN) images is often ignored in detail injection. For the mentioned problems, unsupervised generative adversarial networks with recursive mixed-scale feature fusion for pansharpening (RMFF-UPGAN) are modeled to boost the spatial resolution and preserve the spectral information. RMFF-UPGAN comprises a generator and two U-shaped discriminators. A dual-stream trapezoidal branch is designed in the generator to obtain multiscale information. Further, a recursive mixed-scale feature fusion subnetwork is designed. Perform a prior fusion on the extracted MS and PAN features of the same scale. A mixed-scale fusion is conducted on the prior fusion results of the fine-scale and coarse-scale. The fusion is executed sequentially in the above manner building a recursive mixed-scale fusion structure and finally generating key information. A compensation information mechanism is also designed for the reconstruction of key information to compensate for information. A nonlinear rectification block for the reconstructed information is developed to overcome the distortion induced by neglecting the complicated relationship between MS and PAN images. Two U-shaped discriminators are designed and a new composite loss function is defined. The presented model is validated using two satellite data and the outcomes reveal better than the prevalent approaches regarding both visual assessment and objective indicators.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ZZRR发布了新的文献求助10
1秒前
tuanheqi应助remind采纳,获得200
1秒前
黄蛋黄完成签到,获得积分10
1秒前
yhy完成签到,获得积分10
1秒前
1秒前
Hello应助黄橙子采纳,获得10
2秒前
LDDD发布了新的文献求助10
2秒前
baixue发布了新的文献求助10
2秒前
2秒前
TrucCSC给TrucCSC的求助进行了留言
2秒前
2秒前
3秒前
猫咪老师应助CY采纳,获得30
3秒前
3秒前
4秒前
xxxx发布了新的文献求助10
4秒前
4秒前
柴柴发布了新的文献求助10
5秒前
fangqiqi发布了新的文献求助10
6秒前
6秒前
汪鸡毛完成签到 ,获得积分10
6秒前
优雅天荷完成签到,获得积分10
6秒前
7秒前
7秒前
饱满松鼠完成签到 ,获得积分10
8秒前
失眠尔柳完成签到,获得积分10
8秒前
田様应助端庄铃铛采纳,获得10
8秒前
kkkkkk完成签到,获得积分10
9秒前
mumu发布了新的文献求助10
10秒前
11秒前
失眠尔柳发布了新的文献求助10
11秒前
orixero应助zzzz采纳,获得10
11秒前
你仍是我发布了新的文献求助10
13秒前
13秒前
13秒前
Andrew02应助大头头不大采纳,获得10
14秒前
yyyq0721完成签到,获得积分10
14秒前
15秒前
晚晚完成签到 ,获得积分10
16秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
The Paleoanthropology of Eastern Asia 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3174474
求助须知:如何正确求助?哪些是违规求助? 2825655
关于积分的说明 7953656
捐赠科研通 2486627
什么是DOI,文献DOI怎么找? 1325337
科研通“疑难数据库(出版商)”最低求助积分说明 634441
版权声明 602734