Pansharpening Using Unsupervised Generative Adversarial Networks With Recursive Mixed-Scale Feature Fusion

计算机科学 全色胶片 人工智能 特征(语言学) 多光谱图像 模式识别(心理学) 比例(比率) 特征提取 融合机制 图像分辨率 数据挖掘 融合 哲学 物理 脂质双层融合 量子力学 语言学
作者
Yuanyuan Wu,Yuchun Li,Siling Feng,Mengxing Huang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 3742-3759 被引量:14
标识
DOI:10.1109/jstars.2023.3259014
摘要

Panchromatic sharpening (pansharpening) is an important technology for improving the spatial resolution of multispectral (MS) images. The majority of the models are implemented at the reduced resolution, leading to unfavorable results at the full resolution. Moreover, the complicated relationship between MS and panchromatic (PAN) images is often ignored in detail injection. For the mentioned problems, unsupervised generative adversarial networks with recursive mixed-scale feature fusion for pansharpening (RMFF-UPGAN) are modeled to boost the spatial resolution and preserve the spectral information. RMFF-UPGAN comprises a generator and two U-shaped discriminators. A dual-stream trapezoidal branch is designed in the generator to obtain multiscale information. Further, a recursive mixed-scale feature fusion subnetwork is designed. Perform a prior fusion on the extracted MS and PAN features of the same scale. A mixed-scale fusion is conducted on the prior fusion results of the fine-scale and coarse-scale. The fusion is executed sequentially in the above manner building a recursive mixed-scale fusion structure and finally generating key information. A compensation information mechanism is also designed for the reconstruction of key information to compensate for information. A nonlinear rectification block for the reconstructed information is developed to overcome the distortion induced by neglecting the complicated relationship between MS and PAN images. Two U-shaped discriminators are designed and a new composite loss function is defined. The presented model is validated using two satellite data and the outcomes reveal better than the prevalent approaches regarding both visual assessment and objective indicators.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ying发布了新的文献求助10
1秒前
2秒前
大气亦巧发布了新的文献求助10
3秒前
拂袖完成签到,获得积分10
4秒前
4秒前
7秒前
小鱼完成签到,获得积分10
7秒前
hecheng发布了新的文献求助30
8秒前
孙总发布了新的文献求助10
8秒前
热心市民小红花应助niusama采纳,获得10
8秒前
9秒前
10秒前
10秒前
Jeamren完成签到,获得积分10
10秒前
赞zan发布了新的文献求助10
11秒前
1230发布了新的文献求助10
12秒前
斯文败类应助大气亦巧采纳,获得30
12秒前
echo发布了新的文献求助10
15秒前
16秒前
17秒前
完美世界应助甜美的成败采纳,获得10
17秒前
风一样的风干肠完成签到,获得积分10
17秒前
theblue发布了新的文献求助10
17秒前
hoijuon应助1230采纳,获得10
19秒前
Akim应助笨笨醉薇采纳,获得10
19秒前
卷卷完成签到,获得积分10
20秒前
蒹葭苍苍完成签到,获得积分10
20秒前
酷波er应助妮妮采纳,获得10
23秒前
chigga发布了新的文献求助10
24秒前
27秒前
小二郎应助chigga采纳,获得10
27秒前
8R60d8应助迟到虞姬采纳,获得10
29秒前
卡卡西应助科研通管家采纳,获得30
29秒前
ED应助科研通管家采纳,获得10
29秒前
科目三应助科研通管家采纳,获得10
29秒前
29秒前
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
kingwill应助科研通管家采纳,获得20
30秒前
星辰大海应助科研通管家采纳,获得10
30秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961022
求助须知:如何正确求助?哪些是违规求助? 3507251
关于积分的说明 11134887
捐赠科研通 3239661
什么是DOI,文献DOI怎么找? 1790309
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150