清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Pansharpening Using Unsupervised Generative Adversarial Networks With Recursive Mixed-Scale Feature Fusion

计算机科学 全色胶片 人工智能 特征(语言学) 多光谱图像 模式识别(心理学) 比例(比率) 特征提取 融合机制 图像分辨率 数据挖掘 融合 哲学 物理 脂质双层融合 量子力学 语言学
作者
Yuanyuan Wu,Yuchun Li,Siling Feng,Mengxing Huang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 3742-3759 被引量:14
标识
DOI:10.1109/jstars.2023.3259014
摘要

Panchromatic sharpening (pansharpening) is an important technology for improving the spatial resolution of multispectral (MS) images. The majority of the models are implemented at the reduced resolution, leading to unfavorable results at the full resolution. Moreover, the complicated relationship between MS and panchromatic (PAN) images is often ignored in detail injection. For the mentioned problems, unsupervised generative adversarial networks with recursive mixed-scale feature fusion for pansharpening (RMFF-UPGAN) are modeled to boost the spatial resolution and preserve the spectral information. RMFF-UPGAN comprises a generator and two U-shaped discriminators. A dual-stream trapezoidal branch is designed in the generator to obtain multiscale information. Further, a recursive mixed-scale feature fusion subnetwork is designed. Perform a prior fusion on the extracted MS and PAN features of the same scale. A mixed-scale fusion is conducted on the prior fusion results of the fine-scale and coarse-scale. The fusion is executed sequentially in the above manner building a recursive mixed-scale fusion structure and finally generating key information. A compensation information mechanism is also designed for the reconstruction of key information to compensate for information. A nonlinear rectification block for the reconstructed information is developed to overcome the distortion induced by neglecting the complicated relationship between MS and PAN images. Two U-shaped discriminators are designed and a new composite loss function is defined. The presented model is validated using two satellite data and the outcomes reveal better than the prevalent approaches regarding both visual assessment and objective indicators.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果完成签到 ,获得积分10
刚刚
15秒前
郑琦敏钰完成签到 ,获得积分10
17秒前
19秒前
立行完成签到 ,获得积分10
21秒前
28秒前
31秒前
XD824发布了新的文献求助10
32秒前
优雅的WAN完成签到 ,获得积分10
44秒前
45秒前
热情的橙汁完成签到,获得积分10
49秒前
51秒前
个性的紫菜应助hugeyoung采纳,获得30
51秒前
靓丽宛亦完成签到 ,获得积分10
56秒前
hugeyoung完成签到,获得积分10
1分钟前
1分钟前
萝卜猪完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Wen完成签到 ,获得积分0
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
LMW应助lee采纳,获得10
2分钟前
XD824发布了新的文献求助10
2分钟前
sfjww发布了新的文献求助30
2分钟前
中恐完成签到,获得积分0
2分钟前
2分钟前
xun应助lee采纳,获得30
2分钟前
浚稚完成签到 ,获得积分10
2分钟前
2分钟前
Ava应助如沐春风采纳,获得10
3分钟前
ffff完成签到,获得积分10
3分钟前
3分钟前
3分钟前
如沐春风完成签到,获得积分10
3分钟前
3分钟前
如沐春风发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596743
求助须知:如何正确求助?哪些是违规求助? 4008546
关于积分的说明 12409321
捐赠科研通 3687625
什么是DOI,文献DOI怎么找? 2032568
邀请新用户注册赠送积分活动 1065806
科研通“疑难数据库(出版商)”最低求助积分说明 951098