亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Pansharpening Using Unsupervised Generative Adversarial Networks With Recursive Mixed-Scale Feature Fusion

计算机科学 全色胶片 人工智能 特征(语言学) 多光谱图像 模式识别(心理学) 比例(比率) 特征提取 融合机制 图像分辨率 数据挖掘 融合 哲学 语言学 物理 量子力学 脂质双层融合
作者
Yuanyuan Wu,Yuchun Li,Siling Feng,Mengxing Huang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 3742-3759 被引量:14
标识
DOI:10.1109/jstars.2023.3259014
摘要

Panchromatic sharpening (pansharpening) is an important technology for improving the spatial resolution of multispectral (MS) images. The majority of the models are implemented at the reduced resolution, leading to unfavorable results at the full resolution. Moreover, the complicated relationship between MS and panchromatic (PAN) images is often ignored in detail injection. For the mentioned problems, unsupervised generative adversarial networks with recursive mixed-scale feature fusion for pansharpening (RMFF-UPGAN) are modeled to boost the spatial resolution and preserve the spectral information. RMFF-UPGAN comprises a generator and two U-shaped discriminators. A dual-stream trapezoidal branch is designed in the generator to obtain multiscale information. Further, a recursive mixed-scale feature fusion subnetwork is designed. Perform a prior fusion on the extracted MS and PAN features of the same scale. A mixed-scale fusion is conducted on the prior fusion results of the fine-scale and coarse-scale. The fusion is executed sequentially in the above manner building a recursive mixed-scale fusion structure and finally generating key information. A compensation information mechanism is also designed for the reconstruction of key information to compensate for information. A nonlinear rectification block for the reconstructed information is developed to overcome the distortion induced by neglecting the complicated relationship between MS and PAN images. Two U-shaped discriminators are designed and a new composite loss function is defined. The presented model is validated using two satellite data and the outcomes reveal better than the prevalent approaches regarding both visual assessment and objective indicators.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
乐乐应助满意的又蓝采纳,获得30
6秒前
9秒前
凡凡完成签到 ,获得积分10
15秒前
核桃应助Benhnhk21采纳,获得10
16秒前
科研通AI2S应助Joseph采纳,获得10
35秒前
朱宣诚发布了新的文献求助10
55秒前
1分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
kokishi完成签到,获得积分10
2分钟前
辉哥完成签到,获得积分10
2分钟前
Ava应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
lo王一博_赵丽颖ve完成签到,获得积分10
3分钟前
4分钟前
朱宣诚发布了新的文献求助10
4分钟前
4分钟前
4分钟前
wukong完成签到,获得积分10
4分钟前
4分钟前
4分钟前
科研通AI5应助朱宣诚采纳,获得10
4分钟前
噔噔蹬发布了新的文献求助10
4分钟前
CHF发布了新的文献求助10
4分钟前
5分钟前
CHF完成签到,获得积分10
5分钟前
朱宣诚发布了新的文献求助10
5分钟前
5分钟前
5分钟前
生命科学的第一推动力完成签到 ,获得积分10
5分钟前
5分钟前
上官若男应助zzb采纳,获得10
5分钟前
5分钟前
5分钟前
合适的楷瑞完成签到,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4944967
求助须知:如何正确求助?哪些是违规求助? 4209640
关于积分的说明 13085653
捐赠科研通 3989647
什么是DOI,文献DOI怎么找? 2184248
邀请新用户注册赠送积分活动 1199558
关于科研通互助平台的介绍 1112737