Experimental study on the thermal management performance of a power battery module with a pulsating heat pipe under different thermal management strategies

电池(电) 汽车工程 能源管理 热的 电子设备和系统的热管理 热管 能源消耗 功率(物理) 机械工程 工程类 传热 电气工程 能量(信号处理) 热力学 物理 统计 数学
作者
Wenjie Lv,Jingjing Li,Meng Chen
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:227: 120402-120402 被引量:40
标识
DOI:10.1016/j.applthermaleng.2023.120402
摘要

Given the power battery module for electric vehicle kinetic energy system in a high-temperature environment and large rate discharge process, there are thermal safety risks such as battery easy overheating and temperature uneven, this paper takes 23Ah LFP power battery module as the research object to build the system. The system uses TiO2 nanofluid pulsating heat pipe (TiO2-CLPHP) and cooling fan as heat conduction and heat dissipation components and conducts thermal monitoring of power battery modules through a thermocouple built into the power battery. The thermal management strategy of optimal thermal efficiency and optimal thermal management strategy of energy consumption proposed in this paper is used to solve the thermal management problem of power battery modules. On this basis, the performance tests of the power battery module thermal management system with optimal thermal efficiency and optimal energy consumption were carried out under different thermal management performance testing conditions, and the energy consumption and economy of the power battery module thermal management system under the two thermal management strategies were quantitatively analyzed. The test results show that compared with the pure power battery module without any thermal management technical measures, the maximum temperature of the thermal management system of the TiO2-CLPHP power battery module under the optimal thermal management strategy is reduced by 10.3℃ and the maximum cooling efficiency is up to 75.00%. In the dynamic test condition, the TiO2-CLPHP power battery module thermal management system implemented the optimal thermal management strategy of thermal efficiency, and the maximum temperature rise of the power battery was 9.7℃, 7.3℃, 7.5℃, and the maximum temperature difference of the battery was not more than 3.5℃ and 2.5℃, respectively. And when optimal thermal management, whose goal is to have a small critical temperature rise strategy by operating energy consumption, is adopted. The maximum temperature rises are 10.5℃, 8.5℃ and 6.9℃, respectively, with the maximum battery temperature difference not exceeding 3.6℃ and 3.5℃. Compared with the thermal management strategy with optimal thermal efficiency, this not only ensures the thermal management efficiency but also reduces the energy consumption index of the system (that is, it has less thermal management energy consumption). In addition, under different ambient temperatures, compared with the optimal thermal management strategy for thermal efficiency, the TiO2-CLPHP power battery module thermal management system implements the optimal thermal management strategy for energy consumption with a smaller temperature rise critical value, and the energy consumption index of the system can be reduced by up to 60.58%. This indicates that for the TiO2-CLPHP power battery module thermal management system, the proposed energy consumption optimal thermal management strategy with a small critical value can effectively take into account both thermal management efficiency and thermal management energy consumption, which is the most ideal thermal management strategy for power battery modules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助小豆芽儿采纳,获得10
刚刚
麻烦~完成签到,获得积分10
刚刚
1秒前
华仔应助gaos采纳,获得10
1秒前
迪迦发布了新的文献求助30
2秒前
糊涂的勒完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
seven完成签到,获得积分10
2秒前
wzxxxx完成签到,获得积分20
2秒前
3秒前
fffzy完成签到,获得积分10
3秒前
MADKAI发布了新的文献求助50
3秒前
lkn完成签到,获得积分10
3秒前
浦肯野举报单薄凌蝶求助涉嫌违规
4秒前
爱撒娇的橘子完成签到,获得积分10
4秒前
4秒前
Owen应助皮蛋瘦肉周采纳,获得10
5秒前
李漂亮完成签到,获得积分10
5秒前
222完成签到 ,获得积分10
5秒前
wzxxxx发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
文艺谷蓝完成签到,获得积分10
7秒前
丰富的复天完成签到,获得积分10
7秒前
干净的寒天完成签到,获得积分10
7秒前
科研通AI5应助WNL采纳,获得10
8秒前
无聊的面包完成签到,获得积分10
8秒前
8秒前
JIN完成签到,获得积分10
10秒前
Amber应助老疯智采纳,获得10
10秒前
星寒完成签到 ,获得积分10
10秒前
shen完成签到,获得积分10
12秒前
尊敬的发布了新的文献求助10
13秒前
zhenzhen发布了新的文献求助10
14秒前
14秒前
眼睛大的金鱼完成签到,获得积分10
14秒前
CipherSage应助不对也没错采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678