微塑料
微观世界
营养物
微生物种群生物学
生物降解
环境化学
化学
微生物
蛋白质细菌
土壤碳
土壤水分
农学
生物
生态学
细菌
生物化学
基因
遗传学
16S核糖体RNA
作者
Jia Shi,Zi Wang,Yumei Peng,Ziyun Zhang,Zhongmin Fan,Jie Wang,Li Wang
标识
DOI:10.1016/j.scitotenv.2023.162885
摘要
The impact of conventional and biodegradable microplastics on soil nutrients (carbon and nitrogen) has been widely examined, and the alteration of nutrient conditions further influences microbial biosynthesis processes. Nonetheless, the influence of microplastic-induced nutrient imbalances on soil microorganisms (from metabolism to community interactions) is still not well understood. We hypothesized that conventional and biodegradable microplastic could alter soil nutrients and microbial processes. To fill this knowledge gap, we conducted soil microcosms with polyethylene (PE, new and aged) and polylactic acid (PLA, new and aged) microplastics to evaluate their effects on the soil enzymatic stoichiometry, co-occurrence interactions, and success patterns of soil bacterial communities. New and aged PLA induced soil N immobilization, which decreased soil mineral N by 91-141 %. The biodegradation of PLA led to a higher bioavailable C and wider bioavailable C:N ratio, which further filtered out specific microbial species. Both new and aged PLA had a higher abundance of copiotrophic members (Proteobacteria, 35-51 % in PLA, 26-34 % in CK/PE treatments) and rrn copy number. The addition of PLA resulted in a lower alpha diversity and reduced network complexity. Conversely, because of the chemically stable hydrocarbon structure of PE polymers, the new and aged PE microplastics had a minor effect on soil mineral N, bacterial community composition, and network complexity, but led to microbial C limitation. Collectively, all microplastics increased soil C-, N-, and P -acquiring enzyme activities and reduced the number of keystone species and the robustness of the co-occurrence network. The PLA treatment enhanced nitrogen fixation and ureolysis, whereas the PE treatment increased the degradation of recalcitrant carbon. Overall, the alteration of soil nutrient conditions by microplastics affected the microbial metabolism and community interactions, although the effects of PE and PLA microplastics were distinct.
科研通智能强力驱动
Strongly Powered by AbleSci AI