电气工程
噪声系数
放大器
闪烁噪声
低噪声放大器
开关电容器
射频前端
电容器
CMOS芯片
物理
工程类
无线电频率
电子工程
电压
作者
Chao Chen,Dan Huang,Yan Zhao,Yuemin Jin,Jun Yang
出处
期刊:IEEE Journal of Solid-state Circuits
[Institute of Electrical and Electronics Engineers]
日期:2023-07-01
卷期号:58 (7): 1825-1837
被引量:1
标识
DOI:10.1109/jssc.2023.3266268
摘要
In this article, an ultra-low-voltage 2.4-GHz radio frequency (RF) receiver front-end architecture targeting the removal of output flicker noise is presented, making it possible to use zero-IF topology for narrow-band communication standards. The trans-impedance amplifier (TIA) is built on the proposed hybrid operational trans-conductance amplifier (OTA) with a switched-capacitor (SC) amplifier as the first gain stage and an active primary–secondary amplifier as the second gain stage, achieving an imperceptible flicker-noise corner frequency. With the SC gain stage, the interstage common-mode voltage can be set to 0 V, which reduces the minimum supply voltage to 0.5 V. As another benefit, dc offset compensation (DCOC) is performed inherently in the interstage sampling and coupling process. Fabricated in 28-nm RF CMOS process, the front-end prototype, including an on-chip matching inductor, occupies a die area of 0.8 mm 2 . Operating in the Industrial Scientific Medical (ISM) frequency band of 2.4 GHz with 1-MHz IF bandwidth, the front end provides a 36–40-dB conversion gain, an 11.5-dBm OIP3, and a flicker-noise corner frequency less than 10 kHz with the supply voltage ranging from 0.5 to 0.6 V. The RF impedance matching network provides passive voltage gain before the low-noise trans-conductance amplifier (LNTA), achieving a 4.5-dB noise figure (NF) with 0.8-mA biasing current in the $g_{m}$ stage. With the ultra-low supply voltage and the passive IF gain stage, the power consumption of the proposed front end is only $610 \mu \text{W}$ under a 0.53-V supply voltage.
科研通智能强力驱动
Strongly Powered by AbleSci AI