光学
人工智能
编码孔径
采样(信号处理)
像素
傅里叶变换
编码(内存)
编码器
解码方法
自适应采样
摄影术
计算机科学
迭代重建
图像质量
计算机视觉
算法
物理
图像(数学)
数学
衍射
电信
探测器
数学分析
统计
滤波器(信号处理)
蒙特卡罗方法
操作系统
作者
Wenxin Huang,Fei Wang,Xiangyu Zhang,Ying Jin,Guohai Situ
出处
期刊:Optics Letters
[Optica Publishing Group]
日期:2023-04-24
卷期号:48 (11): 2985-2985
被引量:16
摘要
In this Letter, we present a learning-based method for efficient Fourier single-pixel imaging (FSI). Based on the auto-encoder, the proposed adaptive under-sampling technique (AuSamNet) manages to optimize a sampling mask and a deep neural network at the same time to achieve both under-sampling of the object image's Fourier spectrum and high-quality reconstruction from the under-sampled measurements. It is thus helpful in determining the best encoding and decoding scheme for FSI. Simulation and experiments demonstrate that AuSamNet can reconstruct high-quality natural color images even when the sampling ratio is as low as 7.5%. The proposed adaptive under-sampling strategy can be used for other computational imaging modalities, such as tomography and ptychography. We have released our source code.
科研通智能强力驱动
Strongly Powered by AbleSci AI