Joint segmentation and classification of skin lesions via a multi-task learning convolutional neural network

计算机科学 分割 卷积神经网络 子网 人工智能 模式识别(心理学) 编码器 深度学习 计算机网络 操作系统
作者
Xiaoyu He,Yong Wang,Shuang Zhao,Xiang Chen
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:230: 120174-120174 被引量:7
标识
DOI:10.1016/j.eswa.2023.120174
摘要

Skin lesion segmentation and classification are two crucial and correlated tasks in computer-aided diagnosis of skin diseases. Jointly performing these two tasks can exploit their correlations to obtain performance gains, but it remains a challenging topic. In this paper, we propose an end-to-end multi-task learning convolutional neural network (MTL-CNN) for joint skin lesion segmentation and classification, and additionally introduce edge prediction as an auxiliary task. Overall, MTL-CNN includes a shared encoder, two parallel decoders for generating edge and segmentation masks, and a classification subnet. First, the shared encoder is used to extract features for three tasks (i.e., edge prediction, segmentation, and classification). Then, we propose two kinds of simple but efficient modules to exploit the benefits among these three tasks. Specifically, we design multiple edge information enhancement (EIE) modules between the encoder and the segmentation decoder, aiming at introducing the edge information from the edge decoder as strong cues to enhance the edge parts of the segmentation features. These enhanced segmentation features are sent to the segmentation decoder for better segmentation. Besides, we design multiple lesion area extraction (LAE) modules between the encoder and the classification subnet, which aim to utilize the segmentation results to filter out the distractions on the classification features. These filtered classification features are input to the classification subnet and progressively fused in a bottom-up manner for classification. A three-phase training strategy is employed to train MTL-CNN. Extensive experiments on three datasets demonstrate the superiority of MTL-CNN over state-of-the-art segmentation, classification, and other multi-task approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
完美世界应助nil采纳,获得10
1秒前
丘比特应助Mian采纳,获得10
2秒前
6秒前
完美世界应助科研通管家采纳,获得100
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得30
7秒前
7秒前
7秒前
9秒前
34Kenny完成签到,获得积分10
9秒前
cm完成签到 ,获得积分10
14秒前
有梦想的小猪猪完成签到 ,获得积分10
14秒前
单纯代萱发布了新的文献求助10
15秒前
16秒前
传奇3应助1huiqina采纳,获得30
16秒前
优雅的琳完成签到,获得积分10
18秒前
星沉静默完成签到 ,获得积分10
18秒前
搞怪哑铃发布了新的文献求助10
19秒前
26秒前
ffffffflzx666完成签到,获得积分10
27秒前
29秒前
所所应助单纯代萱采纳,获得10
31秒前
33秒前
33秒前
勤恳幻然发布了新的文献求助10
34秒前
星星完成签到,获得积分10
34秒前
搞怪哑铃完成签到,获得积分10
35秒前
35秒前
JamesPei应助飞快的雨寒采纳,获得10
35秒前
贪玩蜜蜂完成签到,获得积分10
36秒前
英俊的铭应助缥缈南风采纳,获得10
36秒前
37秒前
开朗白玉发布了新的文献求助10
39秒前
40秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164170
求助须知:如何正确求助?哪些是违规求助? 2814884
关于积分的说明 7906945
捐赠科研通 2474500
什么是DOI,文献DOI怎么找? 1317533
科研通“疑难数据库(出版商)”最低求助积分说明 631841
版权声明 602228