氧化还原
电化学
氧化剂
插层(化学)
阴极
钠
镍
无机化学
公式单位
氧化态
化学
吸收光谱法
材料科学
电极
结晶学
金属
物理化学
晶体结构
有机化学
物理
量子力学
作者
Vitalii A. Shevchenko,Iana S. Glazkova,Daniil A. Novichkov,Irina Skvortsova,Alexey V. Sobolev,Artem M. Abakumov,Igor A. Presniakov,Oleg A. Drozhzhin,Evgeny V. Antipov
标识
DOI:10.1021/acs.chemmater.3c00338
摘要
Sodium-ion batteries are attracting great attention due to their low cost and abundance of sodium. The O3-type NaNi1/3Fe1/3Mn1/3O2 layered oxide material is a promising candidate for positive electrodes (cathodes) in Na-ion batteries. However, its stable electrochemical performance is restricted by the upper voltage limit of 4.0 V (vs Na/Na+), which allows for reversibly removing 0.5–0.55 Na+ per formula unit, corresponding to the capacity of 120–130 mAh·g–1. Further reduction of sodium content inevitably accelerates capacity degradation, and this issue calls for a detailed study of the redox reactions that accompany the electrochemical (de)intercalation of a large amount of sodium. Here, we present operando and ex situ studies using powder X-ray diffraction and X-ray absorption spectroscopy combined with 57Fe Mössbauer spectroscopy. Our approach reveals the sequence of the redox transitions that occur during the charge and discharge of O3-NaNi1/3Fe1/3Mn1/3O2. Our data show that in addition to nickel and iron cations oxidizing to M+4, a part of iron transforms into the "3 + δ" state owing to the fast electron exchange Fe3+ + Fe4+ ↔ Fe4+ + Fe3+. This process freezes upon cooling the material to 35 K, producing Fe4+ cations, some of which occupy tetrahedral positions.
科研通智能强力驱动
Strongly Powered by AbleSci AI