Large-Scale Dynamic Scheduling for Flexible Job-Shop With Random Arrivals of New Jobs by Hierarchical Reinforcement Learning

计算机科学 强化学习 启发式 工作车间 调度(生产过程) 作业车间调度 动态优先级调度 工业工程 分布式计算 机器学习 流水车间调度 人工智能 数学优化 工程类 地铁列车时刻表 操作系统 数学
作者
Kun Lei,Peng Guo,Yi Wang,Jian Zhang,Xiangyin Meng,Linmao Qian
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 1007-1018 被引量:52
标识
DOI:10.1109/tii.2023.3272661
摘要

As the intelligent manufacturing paradigm evolves, it is urgent to design a near real-time decision-making framework for handling the uncertainty and complexity of production line control. The dynamic flexible job shop scheduling problem (DFJSP) is frequently encountered in the manufacturing industry. However, it is still challenging to obtain high-quality schedules for DFJSP with dynamic job arrivals in real-time, especially facing thousands of operations from a large-scale scene with complex contexts in an assembly plant. This article aims to propose a novel end-to-end hierarchical reinforcement learning framework for solving the large-scale DFJSP in near real-time. In the DFJSP, the processing information of newly arrived jobs is unknown in advance. Besides, two optimization tasks, including job operation selection and job-to-machine assignment, have to be handled, which means multiple actions must be controlled simultaneously. In our framework, a higher-level layer is designed to automatically divide the DFJSP into subproblems, i.e., static FJSPs with different scales. And two lower-level layers are constructed to solve the subproblems. In particular, one layer based on a graph neural network is in charge of sequencing job operations, and another layer based on a multilayer perceptron is used to assign a machine to process the job operations. Numerical experiments, including offline training and online testing, are conducted on several instances with different scales. The results verify the superior performance of the proposed framework compared with existing dynamic scheduling methods, such as well-known dispatching rules and metaheuristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助默默安双采纳,获得10
刚刚
CipherSage应助大灰机小灰机采纳,获得10
刚刚
1秒前
2秒前
积极芷容完成签到,获得积分20
2秒前
2秒前
天真听筠完成签到 ,获得积分10
2秒前
简qiu发布了新的文献求助10
2秒前
3秒前
Fanfan完成签到 ,获得积分10
4秒前
Cookies完成签到,获得积分10
4秒前
852应助虚心茉莉采纳,获得10
4秒前
FK7发布了新的文献求助10
4秒前
肖小葵发布了新的文献求助10
4秒前
5秒前
5秒前
药药55发布了新的文献求助20
5秒前
ssssxr发布了新的文献求助10
5秒前
czxchase完成签到,获得积分10
6秒前
未晚完成签到,获得积分10
7秒前
7秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得20
8秒前
我是老大应助科研通管家采纳,获得30
8秒前
鸣笛应助科研通管家采纳,获得50
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
鸣笛应助科研通管家采纳,获得30
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
9秒前
鸣笛应助科研通管家采纳,获得30
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
J卡卡K完成签到,获得积分10
9秒前
9秒前
暮辞完成签到,获得积分10
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954162
求助须知:如何正确求助?哪些是违规求助? 3500172
关于积分的说明 11098313
捐赠科研通 3230649
什么是DOI,文献DOI怎么找? 1786063
邀请新用户注册赠送积分活动 869805
科研通“疑难数据库(出版商)”最低求助积分说明 801609