Large-Scale Dynamic Scheduling for Flexible Job-Shop With Random Arrivals of New Jobs by Hierarchical Reinforcement Learning

计算机科学 强化学习 启发式 工作车间 调度(生产过程) 作业车间调度 动态优先级调度 工业工程 分布式计算 机器学习 流水车间调度 人工智能 数学优化 工程类 地铁列车时刻表 操作系统 数学
作者
Kun Lei,Peng Guo,Yi Wang,Jian Zhang,Xiangyin Meng,Linmao Qian
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 1007-1018 被引量:124
标识
DOI:10.1109/tii.2023.3272661
摘要

As the intelligent manufacturing paradigm evolves, it is urgent to design a near real-time decision-making framework for handling the uncertainty and complexity of production line control. The dynamic flexible job shop scheduling problem (DFJSP) is frequently encountered in the manufacturing industry. However, it is still challenging to obtain high-quality schedules for DFJSP with dynamic job arrivals in real-time, especially facing thousands of operations from a large-scale scene with complex contexts in an assembly plant. This article aims to propose a novel end-to-end hierarchical reinforcement learning framework for solving the large-scale DFJSP in near real-time. In the DFJSP, the processing information of newly arrived jobs is unknown in advance. Besides, two optimization tasks, including job operation selection and job-to-machine assignment, have to be handled, which means multiple actions must be controlled simultaneously. In our framework, a higher-level layer is designed to automatically divide the DFJSP into subproblems, i.e., static FJSPs with different scales. And two lower-level layers are constructed to solve the subproblems. In particular, one layer based on a graph neural network is in charge of sequencing job operations, and another layer based on a multilayer perceptron is used to assign a machine to process the job operations. Numerical experiments, including offline training and online testing, are conducted on several instances with different scales. The results verify the superior performance of the proposed framework compared with existing dynamic scheduling methods, such as well-known dispatching rules and metaheuristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不知道发布了新的文献求助10
1秒前
byron完成签到,获得积分10
1秒前
1秒前
1秒前
lcz发布了新的文献求助10
2秒前
2秒前
Once发布了新的文献求助10
2秒前
一王打尽完成签到,获得积分10
2秒前
24K纯帅发布了新的文献求助10
2秒前
852应助流逝采纳,获得30
3秒前
大个应助欢喜冷S亦A采纳,获得10
3秒前
3秒前
茨橙完成签到,获得积分10
3秒前
嘻嘻发布了新的文献求助10
3秒前
风一起发布了新的文献求助10
4秒前
4秒前
在水一方应助诗蕊采纳,获得10
4秒前
byron发布了新的文献求助10
4秒前
4秒前
4秒前
小二郎应助大力的诗蕾采纳,获得10
4秒前
爆米花应助xiayiyi采纳,获得10
4秒前
4秒前
YY完成签到 ,获得积分10
6秒前
宋温暖举报77求助涉嫌违规
6秒前
传奇3应助WUQINGHALASHAO采纳,获得10
6秒前
Dore发布了新的文献求助10
6秒前
Arlene发布了新的文献求助10
6秒前
小郭呀完成签到,获得积分10
6秒前
香蕉梨愁完成签到,获得积分10
7秒前
wyl发布了新的文献求助10
7秒前
8秒前
怡然冷安完成签到,获得积分10
8秒前
汉堡包应助ping采纳,获得30
8秒前
SSS发布了新的文献求助10
8秒前
8秒前
丘比特应助科研锐采纳,获得10
9秒前
9秒前
BOSSJING完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624821
求助须知:如何正确求助?哪些是违规求助? 4710692
关于积分的说明 14951877
捐赠科研通 4778750
什么是DOI,文献DOI怎么找? 2553437
邀请新用户注册赠送积分活动 1515386
关于科研通互助平台的介绍 1475721