亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Large-Scale Dynamic Scheduling for Flexible Job-Shop With Random Arrivals of New Jobs by Hierarchical Reinforcement Learning

计算机科学 强化学习 启发式 工作车间 调度(生产过程) 作业车间调度 动态优先级调度 工业工程 分布式计算 机器学习 流水车间调度 人工智能 数学优化 工程类 地铁列车时刻表 操作系统 数学
作者
Kun Lei,Peng Guo,Yi Wang,Jian Zhang,Xiangyin Meng,Linmao Qian
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 1007-1018 被引量:81
标识
DOI:10.1109/tii.2023.3272661
摘要

As the intelligent manufacturing paradigm evolves, it is urgent to design a near real-time decision-making framework for handling the uncertainty and complexity of production line control. The dynamic flexible job shop scheduling problem (DFJSP) is frequently encountered in the manufacturing industry. However, it is still challenging to obtain high-quality schedules for DFJSP with dynamic job arrivals in real-time, especially facing thousands of operations from a large-scale scene with complex contexts in an assembly plant. This article aims to propose a novel end-to-end hierarchical reinforcement learning framework for solving the large-scale DFJSP in near real-time. In the DFJSP, the processing information of newly arrived jobs is unknown in advance. Besides, two optimization tasks, including job operation selection and job-to-machine assignment, have to be handled, which means multiple actions must be controlled simultaneously. In our framework, a higher-level layer is designed to automatically divide the DFJSP into subproblems, i.e., static FJSPs with different scales. And two lower-level layers are constructed to solve the subproblems. In particular, one layer based on a graph neural network is in charge of sequencing job operations, and another layer based on a multilayer perceptron is used to assign a machine to process the job operations. Numerical experiments, including offline training and online testing, are conducted on several instances with different scales. The results verify the superior performance of the proposed framework compared with existing dynamic scheduling methods, such as well-known dispatching rules and metaheuristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
byho发布了新的文献求助10
1秒前
研友_VZG7GZ应助byho采纳,获得10
14秒前
35秒前
byho发布了新的文献求助10
40秒前
WerWu完成签到,获得积分10
43秒前
Jasper应助byho采纳,获得10
51秒前
今后应助byho采纳,获得10
51秒前
科研通AI5应助科研通管家采纳,获得200
55秒前
Sam1357完成签到,获得积分20
59秒前
orixero应助dransgods采纳,获得10
1分钟前
1分钟前
dransgods发布了新的文献求助10
1分钟前
1分钟前
阿莫西林完成签到,获得积分10
1分钟前
byho发布了新的文献求助10
1分钟前
2分钟前
byho发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
忧伤的绍辉完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Otter完成签到,获得积分0
3分钟前
3分钟前
852应助头孢西丁采纳,获得30
3分钟前
KachiRyoji应助头孢西丁采纳,获得20
3分钟前
阿布发布了新的文献求助10
3分钟前
牛八先生完成签到,获得积分10
4分钟前
CipherSage应助七人七采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
七人七发布了新的文献求助10
5分钟前
阿布完成签到,获得积分10
5分钟前
热情的寄瑶完成签到 ,获得积分10
5分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
千里草完成签到,获得积分10
6分钟前
隐形曼青应助Swait采纳,获得10
6分钟前
七人七发布了新的文献求助10
6分钟前
科研通AI5应助七人七采纳,获得10
6分钟前
胡桃完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4611742
求助须知:如何正确求助?哪些是违规求助? 4017185
关于积分的说明 12436076
捐赠科研通 3699108
什么是DOI,文献DOI怎么找? 2039948
邀请新用户注册赠送积分活动 1072735
科研通“疑难数据库(出版商)”最低求助积分说明 956483