亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Large-Scale Dynamic Scheduling for Flexible Job-Shop With Random Arrivals of New Jobs by Hierarchical Reinforcement Learning

计算机科学 强化学习 启发式 工作车间 调度(生产过程) 作业车间调度 动态优先级调度 工业工程 分布式计算 机器学习 流水车间调度 人工智能 数学优化 工程类 地铁列车时刻表 操作系统 数学
作者
Kun Lei,Peng Guo,Yi Wang,Jian Zhang,Xiangyin Meng,Linmao Qian
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 1007-1018 被引量:124
标识
DOI:10.1109/tii.2023.3272661
摘要

As the intelligent manufacturing paradigm evolves, it is urgent to design a near real-time decision-making framework for handling the uncertainty and complexity of production line control. The dynamic flexible job shop scheduling problem (DFJSP) is frequently encountered in the manufacturing industry. However, it is still challenging to obtain high-quality schedules for DFJSP with dynamic job arrivals in real-time, especially facing thousands of operations from a large-scale scene with complex contexts in an assembly plant. This article aims to propose a novel end-to-end hierarchical reinforcement learning framework for solving the large-scale DFJSP in near real-time. In the DFJSP, the processing information of newly arrived jobs is unknown in advance. Besides, two optimization tasks, including job operation selection and job-to-machine assignment, have to be handled, which means multiple actions must be controlled simultaneously. In our framework, a higher-level layer is designed to automatically divide the DFJSP into subproblems, i.e., static FJSPs with different scales. And two lower-level layers are constructed to solve the subproblems. In particular, one layer based on a graph neural network is in charge of sequencing job operations, and another layer based on a multilayer perceptron is used to assign a machine to process the job operations. Numerical experiments, including offline training and online testing, are conducted on several instances with different scales. The results verify the superior performance of the proposed framework compared with existing dynamic scheduling methods, such as well-known dispatching rules and metaheuristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
31秒前
缥缈雯发布了新的文献求助10
35秒前
gexzygg应助科研通管家采纳,获得10
42秒前
gexzygg应助科研通管家采纳,获得10
42秒前
shhoing应助科研通管家采纳,获得10
42秒前
CodeCraft应助池雨采纳,获得10
44秒前
gexzygg应助缥缈雯采纳,获得10
46秒前
54秒前
56秒前
tyr001完成签到,获得积分10
1分钟前
akiyy发布了新的文献求助10
1分钟前
1分钟前
akiyy完成签到,获得积分10
1分钟前
1分钟前
池雨发布了新的文献求助10
1分钟前
tyr001发布了新的文献求助10
1分钟前
赘婿应助黎子酱采纳,获得10
2分钟前
万邦德完成签到,获得积分10
2分钟前
Emma完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得30
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
长易发布了新的文献求助10
2分钟前
在水一方应助长易采纳,获得10
3分钟前
3分钟前
烟花应助科研通管家采纳,获得30
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
Yolanda_Xu完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549249
求助须知:如何正确求助?哪些是违规求助? 4634593
关于积分的说明 14634874
捐赠科研通 4576049
什么是DOI,文献DOI怎么找? 2509476
邀请新用户注册赠送积分活动 1485332
关于科研通互助平台的介绍 1456512