Large-Scale Dynamic Scheduling for Flexible Job-Shop With Random Arrivals of New Jobs by Hierarchical Reinforcement Learning

计算机科学 强化学习 启发式 工作车间 调度(生产过程) 作业车间调度 动态优先级调度 工业工程 分布式计算 机器学习 流水车间调度 人工智能 数学优化 工程类 地铁列车时刻表 操作系统 数学
作者
Kun Lei,Peng Guo,Yi Wang,Jian Zhang,Xiangyin Meng,Linmao Qian
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 1007-1018 被引量:90
标识
DOI:10.1109/tii.2023.3272661
摘要

As the intelligent manufacturing paradigm evolves, it is urgent to design a near real-time decision-making framework for handling the uncertainty and complexity of production line control. The dynamic flexible job shop scheduling problem (DFJSP) is frequently encountered in the manufacturing industry. However, it is still challenging to obtain high-quality schedules for DFJSP with dynamic job arrivals in real-time, especially facing thousands of operations from a large-scale scene with complex contexts in an assembly plant. This article aims to propose a novel end-to-end hierarchical reinforcement learning framework for solving the large-scale DFJSP in near real-time. In the DFJSP, the processing information of newly arrived jobs is unknown in advance. Besides, two optimization tasks, including job operation selection and job-to-machine assignment, have to be handled, which means multiple actions must be controlled simultaneously. In our framework, a higher-level layer is designed to automatically divide the DFJSP into subproblems, i.e., static FJSPs with different scales. And two lower-level layers are constructed to solve the subproblems. In particular, one layer based on a graph neural network is in charge of sequencing job operations, and another layer based on a multilayer perceptron is used to assign a machine to process the job operations. Numerical experiments, including offline training and online testing, are conducted on several instances with different scales. The results verify the superior performance of the proposed framework compared with existing dynamic scheduling methods, such as well-known dispatching rules and metaheuristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蛋黄派完成签到,获得积分0
1秒前
1秒前
1秒前
carbon发布了新的文献求助10
3秒前
武庸发布了新的文献求助10
3秒前
Jaoson_G发布了新的文献求助10
4秒前
孟斯扬完成签到,获得积分10
5秒前
6秒前
小鱼儿发布了新的文献求助10
6秒前
6秒前
赵佩奇发布了新的文献求助10
6秒前
顾矜应助阿凉采纳,获得10
9秒前
Jiangpeng完成签到,获得积分10
9秒前
活力初蝶完成签到,获得积分10
9秒前
李健应助zzhi采纳,获得10
11秒前
TJH完成签到,获得积分10
11秒前
柠檬完成签到 ,获得积分10
12秒前
华仔应助229536051213wee采纳,获得10
13秒前
13秒前
李小二完成签到,获得积分10
16秒前
16秒前
田心完成签到,获得积分10
17秒前
17秒前
抽象电台头完成签到,获得积分10
17秒前
yeah发布了新的文献求助10
19秒前
打打应助孤独的根号三采纳,获得10
19秒前
zzz完成签到,获得积分10
20秒前
ye1121发布了新的文献求助10
20秒前
称心的板栗完成签到,获得积分10
22秒前
苏晋强发布了新的文献求助10
22秒前
23秒前
彭于晏应助zz采纳,获得10
24秒前
懵懂的钢笔完成签到,获得积分10
24秒前
24秒前
斯文的邪欢关注了科研通微信公众号
25秒前
coin完成签到,获得积分10
25秒前
caimeng完成签到,获得积分10
25秒前
光亮的太阳完成签到,获得积分10
27秒前
coldbee完成签到,获得积分10
27秒前
purplelove完成签到 ,获得积分10
28秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5227053
求助须知:如何正确求助?哪些是违规求助? 4398242
关于积分的说明 13688816
捐赠科研通 4262916
什么是DOI,文献DOI怎么找? 2339413
邀请新用户注册赠送积分活动 1336749
关于科研通互助平台的介绍 1292800