Large-Scale Dynamic Scheduling for Flexible Job-Shop With Random Arrivals of New Jobs by Hierarchical Reinforcement Learning

计算机科学 强化学习 启发式 工作车间 调度(生产过程) 作业车间调度 动态优先级调度 工业工程 分布式计算 机器学习 流水车间调度 人工智能 数学优化 工程类 地铁列车时刻表 操作系统 数学
作者
Kun Lei,Peng Guo,Yi Wang,Jian Zhang,Xiangyin Meng,Linmao Qian
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 1007-1018 被引量:124
标识
DOI:10.1109/tii.2023.3272661
摘要

As the intelligent manufacturing paradigm evolves, it is urgent to design a near real-time decision-making framework for handling the uncertainty and complexity of production line control. The dynamic flexible job shop scheduling problem (DFJSP) is frequently encountered in the manufacturing industry. However, it is still challenging to obtain high-quality schedules for DFJSP with dynamic job arrivals in real-time, especially facing thousands of operations from a large-scale scene with complex contexts in an assembly plant. This article aims to propose a novel end-to-end hierarchical reinforcement learning framework for solving the large-scale DFJSP in near real-time. In the DFJSP, the processing information of newly arrived jobs is unknown in advance. Besides, two optimization tasks, including job operation selection and job-to-machine assignment, have to be handled, which means multiple actions must be controlled simultaneously. In our framework, a higher-level layer is designed to automatically divide the DFJSP into subproblems, i.e., static FJSPs with different scales. And two lower-level layers are constructed to solve the subproblems. In particular, one layer based on a graph neural network is in charge of sequencing job operations, and another layer based on a multilayer perceptron is used to assign a machine to process the job operations. Numerical experiments, including offline training and online testing, are conducted on several instances with different scales. The results verify the superior performance of the proposed framework compared with existing dynamic scheduling methods, such as well-known dispatching rules and metaheuristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
空白发布了新的文献求助10
1秒前
5秒前
空白完成签到,获得积分10
5秒前
zhlh完成签到,获得积分10
6秒前
7秒前
英姑应助无糖零脂采纳,获得10
7秒前
无心的苡完成签到,获得积分10
8秒前
清脆映真发布了新的文献求助10
9秒前
水123发布了新的文献求助10
9秒前
heniancheng完成签到 ,获得积分10
9秒前
netus完成签到,获得积分10
10秒前
xingcheng完成签到,获得积分10
10秒前
11秒前
12秒前
12秒前
13秒前
汪汪汪完成签到,获得积分10
14秒前
明亮的绫完成签到 ,获得积分10
15秒前
不过尔尔完成签到 ,获得积分10
15秒前
Li完成签到,获得积分10
16秒前
Hilda007发布了新的文献求助10
17秒前
pluto应助斯文的芹菜采纳,获得150
17秒前
林夕完成签到,获得积分10
18秒前
18秒前
19秒前
yybo完成签到,获得积分10
19秒前
zzz发布了新的文献求助10
19秒前
19秒前
xzz完成签到,获得积分10
20秒前
20秒前
拼搏的寒珊完成签到,获得积分10
21秒前
慕青应助香蕉雅山采纳,获得10
21秒前
周周完成签到 ,获得积分10
22秒前
大园完成签到 ,获得积分10
23秒前
23秒前
23秒前
优美紫槐应助小北采纳,获得20
25秒前
Gilbert发布了新的文献求助10
25秒前
shi完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603942
求助须知:如何正确求助?哪些是违规求助? 4688789
关于积分的说明 14856201
捐赠科研通 4695596
什么是DOI,文献DOI怎么找? 2541056
邀请新用户注册赠送积分活动 1507200
关于科研通互助平台的介绍 1471832