High‐Entropy Strategy Flattening Lithium Ion Migration Energy Landscape to Enhance the Conductivity of Garnet‐Type Solid‐State Electrolytes

材料科学 压扁 离子 电导率 快离子导体 电解质 能源景观 固态 锂(药物) 化学物理 化学工程 无机化学 工程物理 热力学 物理化学 复合材料 电极 医学 物理 工程类 量子力学 内分泌学 化学
作者
Shuhan Wang,Xiaojuan Wen,Zan Huang,Haoyang Xu,Fengxia Fan,Xinxiang Wang,Guilei Tian,Sheng Liu,Peng Fei Liu,Chuan Wang,Chenrui Zeng,Chaozhu Shu,Zhenxing Liang
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:35 (9) 被引量:41
标识
DOI:10.1002/adfm.202416389
摘要

Abstract Garnet‐type solid‐state electrolytes with exceptional stability are believed to promote the commercialization of all solid‐state lithium metal batteries. However, the extensive application of garnet‐type solid‐state electrolytes is greatly impeded on account of their low ionic conductivity. Herein, a high‐entropy fast lithium‐ion conductor Li 7 (La,Nd,Sr) 3 (Zr,Ta) 2 O 12 (LLNSZTO) with high lattice distortion is designed. It is found that the enhanced ionic conductivity of the high entropy garnet‐type solid‐state electrolyte LLNSZTO is achieved by introducing disorder in the lattice, which creates fast ion penetration paths with flattened energy landscapes within the pristine ordered lattice. Thus, the prepared high‐entropy garnet‐type solid electrolyte LLNSZTO exhibits low activation energy for Li + migration (0.34 eV) and elevated ionic conductivity (6.26 × 10 −4 S cm −1 ). Full cells assembled with LLNSZTO electrolyte, lithium metal anode, and LiFePO 4 (LFP) cathode exhibit excellent capacity retention of 86.81% after 200 cycles at room temperature. Moreover, the superior ionic conductivity of LLNSZTO enables all solid‐state battery with high‐loading LFP cathode (>12 mg cm −2 ), achieving stable cycling exceeding 120 cycles. The large area pouch cell (5.5 cm × 8 cm) exhibits stable long‐term cycling performance, showing a capacity retention of 96.50% after 50 cycles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
核动力驴发布了新的文献求助10
1秒前
1121发布了新的文献求助10
1秒前
宁燕完成签到,获得积分10
2秒前
mmmk完成签到,获得积分10
2秒前
英俊的铭应助jklwss采纳,获得10
2秒前
Annihilating完成签到,获得积分10
2秒前
zhj发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
mmmk发布了新的文献求助30
5秒前
迷你的鹏飞完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
陈星完成签到,获得积分10
8秒前
89757发布了新的文献求助10
8秒前
dw发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
ucas发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
11秒前
嘴嘴发布了新的文献求助10
11秒前
Andd发布了新的文献求助10
11秒前
12秒前
田様应助DQY采纳,获得10
12秒前
Lucas应助刘婷娜采纳,获得10
12秒前
lmr发布了新的文献求助10
12秒前
13秒前
哈基米德发布了新的文献求助100
13秒前
震动的三问完成签到,获得积分10
13秒前
香蕉觅云应助lnan采纳,获得10
13秒前
刘莅完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695511
求助须知:如何正确求助?哪些是违规求助? 5102149
关于积分的说明 15216311
捐赠科研通 4851790
什么是DOI,文献DOI怎么找? 2602705
邀请新用户注册赠送积分活动 1554389
关于科研通互助平台的介绍 1512420