Integrating QTL and expression QTL of PigGTEx to improve the accuracy of genomic prediction for small population in Yorkshire pigs

生物 数量性状位点 人口 特质 基因组选择 选择(遗传算法) 遗传学 计算生物学 人口规模 基因组学 基因组 计算机科学 单核苷酸多态性 基因 机器学习 基因型 人口学 社会学 程序设计语言
作者
Haoran Shi,He Geng,Bin Yang,Zongjun Yin,Yang Liu
出处
期刊:Animal Genetics [Wiley]
卷期号:56 (1) 被引量:3
标识
DOI:10.1111/age.70001
摘要

Abstract The size of the reference population and sufficient phenotypic records are crucial for the accuracy of genomic selection. However, for small‐to‐medium‐sized pig farms or breeds with limited population sizes, conducting genomic breeding programs presents significant challenges. In this study, 2295 Yorkshire pigs were selected from three distinct regions, including 1500 from an American line, 500 from a Canadian line, and 295 from a Danish line. All populations were genotyped using the GeneSeek 50K GGP Porcine HD chip. To enhance genomic selection accuracy, we proposed strategies that combined multiple populations and leveraged multi‐omics prior information. Cis‐QTL from the PigGTEx database and QTL identified through genome‐wide association studies were incorporated into the genomic feature best linear unbiased prediction (GFBLUP) model to predict the ADG100 and the BF100 traits. Results demonstrated that combining multiple populations effectively improved prediction accuracy for small population, accuracy for ADG100 increased by an average of 0.29 and accuracy for BF100 by 0.05. The GFBLUP model, which integrates biological priors, showed some improvements in prediction accuracy for the BF100 trait. Specifically, for the small population, accuracy increased by 0.09 in Scheme 1, where each population size was predicted independently. In Scheme 3, where the large population was used as a reference group to predict the small population, accuracy increased by 0.03. However, the GFBLUP model did not provide additional benefits in predicting the ADG100 trait. These findings offer effective strategies for genetic improvement in developing regions and highlight the potential of multi‐omics integration to enhance prediction models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
蓦然完成签到,获得积分10
1秒前
宿帅帅完成签到,获得积分10
2秒前
一航发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
yang发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
瀚子发布了新的文献求助10
6秒前
modesty发布了新的文献求助10
6秒前
7秒前
科研后腿发布了新的文献求助10
7秒前
fly发布了新的文献求助10
8秒前
赴约发布了新的文献求助10
8秒前
SCI又中了发布了新的文献求助10
8秒前
LeungYM发布了新的文献求助10
9秒前
加油女王发布了新的文献求助10
9秒前
乐乐应助予秋采纳,获得10
9秒前
10秒前
10秒前
10秒前
夏12发布了新的文献求助10
10秒前
10秒前
10秒前
满意新之发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
htht发布了新的文献求助10
12秒前
Akim应助绿绿采纳,获得10
12秒前
蜘蛛侠完成签到,获得积分10
12秒前
科研通AI6应助一航采纳,获得10
13秒前
迪迪发C刊完成签到,获得积分10
14秒前
小二郎应助zzy采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469093
求助须知:如何正确求助?哪些是违规求助? 4572269
关于积分的说明 14334781
捐赠科研通 4499079
什么是DOI,文献DOI怎么找? 2464915
邀请新用户注册赠送积分活动 1453452
关于科研通互助平台的介绍 1427997