Integrating QTL and expression QTL of PigGTEx to improve the accuracy of genomic prediction for small population in Yorkshire pigs

生物 数量性状位点 人口 特质 基因组选择 选择(遗传算法) 遗传学 计算生物学 人口规模 基因组学 基因组 计算机科学 单核苷酸多态性 基因 机器学习 基因型 人口学 社会学 程序设计语言
作者
Haoran Shi,He Geng,Bin Yang,Zongjun Yin,Yang Liu
出处
期刊:Animal Genetics [Wiley]
卷期号:56 (1) 被引量:3
标识
DOI:10.1111/age.70001
摘要

Abstract The size of the reference population and sufficient phenotypic records are crucial for the accuracy of genomic selection. However, for small‐to‐medium‐sized pig farms or breeds with limited population sizes, conducting genomic breeding programs presents significant challenges. In this study, 2295 Yorkshire pigs were selected from three distinct regions, including 1500 from an American line, 500 from a Canadian line, and 295 from a Danish line. All populations were genotyped using the GeneSeek 50K GGP Porcine HD chip. To enhance genomic selection accuracy, we proposed strategies that combined multiple populations and leveraged multi‐omics prior information. Cis‐QTL from the PigGTEx database and QTL identified through genome‐wide association studies were incorporated into the genomic feature best linear unbiased prediction (GFBLUP) model to predict the ADG100 and the BF100 traits. Results demonstrated that combining multiple populations effectively improved prediction accuracy for small population, accuracy for ADG100 increased by an average of 0.29 and accuracy for BF100 by 0.05. The GFBLUP model, which integrates biological priors, showed some improvements in prediction accuracy for the BF100 trait. Specifically, for the small population, accuracy increased by 0.09 in Scheme 1, where each population size was predicted independently. In Scheme 3, where the large population was used as a reference group to predict the small population, accuracy increased by 0.03. However, the GFBLUP model did not provide additional benefits in predicting the ADG100 trait. These findings offer effective strategies for genetic improvement in developing regions and highlight the potential of multi‐omics integration to enhance prediction models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyf发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
充电宝应助lili采纳,获得10
4秒前
大个应助zsl采纳,获得10
4秒前
低空飞行完成签到,获得积分10
5秒前
大个应助小妮子采纳,获得10
5秒前
7秒前
低空飞行发布了新的文献求助10
7秒前
可爱多发布了新的文献求助10
7秒前
东风发布了新的文献求助10
7秒前
8秒前
9秒前
10秒前
一刀999级发布了新的文献求助10
10秒前
Laray发布了新的文献求助30
10秒前
思源应助刘长绪采纳,获得10
10秒前
科目三应助Ash采纳,获得10
10秒前
蔡莹完成签到 ,获得积分10
10秒前
田様应助晴天采纳,获得10
12秒前
12秒前
俏皮的海云完成签到 ,获得积分10
14秒前
14秒前
14秒前
小毛发布了新的文献求助10
15秒前
赘婿应助小胖胖采纳,获得10
15秒前
花坂结衣发布了新的文献求助10
15秒前
16秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
周凡淇发布了新的文献求助10
18秒前
无花果应助NX采纳,获得10
18秒前
BowieHuang应助mice33采纳,获得10
18秒前
lili发布了新的文献求助10
18秒前
西西完成签到 ,获得积分10
19秒前
JamesPei应助烂漫新儿采纳,获得10
19秒前
19秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627161
求助须知:如何正确求助?哪些是违规求助? 4713090
关于积分的说明 14961386
捐赠科研通 4783800
什么是DOI,文献DOI怎么找? 2554728
邀请新用户注册赠送积分活动 1516296
关于科研通互助平台的介绍 1476641