Integrating QTL and expression QTL of PigGTEx to improve the accuracy of genomic prediction for small population in Yorkshire pigs

生物 数量性状位点 人口 特质 基因组选择 选择(遗传算法) 遗传学 计算生物学 人口规模 基因组学 基因组 计算机科学 单核苷酸多态性 基因 机器学习 基因型 人口学 社会学 程序设计语言
作者
Haoran Shi,He Geng,Bin Yang,Zongjun Yin,Yang Liu
出处
期刊:Animal Genetics [Wiley]
卷期号:56 (1)
标识
DOI:10.1111/age.70001
摘要

Abstract The size of the reference population and sufficient phenotypic records are crucial for the accuracy of genomic selection. However, for small‐to‐medium‐sized pig farms or breeds with limited population sizes, conducting genomic breeding programs presents significant challenges. In this study, 2295 Yorkshire pigs were selected from three distinct regions, including 1500 from an American line, 500 from a Canadian line, and 295 from a Danish line. All populations were genotyped using the GeneSeek 50K GGP Porcine HD chip. To enhance genomic selection accuracy, we proposed strategies that combined multiple populations and leveraged multi‐omics prior information. Cis‐QTL from the PigGTEx database and QTL identified through genome‐wide association studies were incorporated into the genomic feature best linear unbiased prediction (GFBLUP) model to predict the ADG100 and the BF100 traits. Results demonstrated that combining multiple populations effectively improved prediction accuracy for small population, accuracy for ADG100 increased by an average of 0.29 and accuracy for BF100 by 0.05. The GFBLUP model, which integrates biological priors, showed some improvements in prediction accuracy for the BF100 trait. Specifically, for the small population, accuracy increased by 0.09 in Scheme 1, where each population size was predicted independently. In Scheme 3, where the large population was used as a reference group to predict the small population, accuracy increased by 0.03. However, the GFBLUP model did not provide additional benefits in predicting the ADG100 trait. These findings offer effective strategies for genetic improvement in developing regions and highlight the potential of multi‐omics integration to enhance prediction models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Tzzl0226发布了新的文献求助10
2秒前
丘比特应助小易努力学习采纳,获得10
2秒前
tonyhuang完成签到,获得积分10
3秒前
4秒前
科目三应助3139813319采纳,获得10
4秒前
yuky完成签到 ,获得积分10
5秒前
5秒前
Viva发布了新的文献求助10
6秒前
领导范儿应助dd采纳,获得10
6秒前
kk驳回了Orange应助
7秒前
在水一方应助yangmiemie采纳,获得10
9秒前
9秒前
10秒前
10秒前
11秒前
11秒前
12秒前
123发布了新的文献求助10
13秒前
LB0805完成签到,获得积分10
13秒前
13秒前
14秒前
彭于晏应助路过采纳,获得10
15秒前
zhanghan发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
123456678发布了新的文献求助10
17秒前
18秒前
18秒前
古木完成签到,获得积分10
18秒前
gyx发布了新的文献求助10
19秒前
19秒前
drift发布了新的文献求助10
19秒前
20秒前
科研通AI5应助开朗雪巧采纳,获得10
20秒前
20秒前
学不进去一点完成签到,获得积分20
21秒前
清秀尔安完成签到,获得积分10
21秒前
22秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Population Genetics 2000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3496552
求助须知:如何正确求助?哪些是违规求助? 3081396
关于积分的说明 9167155
捐赠科研通 2774333
什么是DOI,文献DOI怎么找? 1522416
邀请新用户注册赠送积分活动 705915
科研通“疑难数据库(出版商)”最低求助积分说明 703173