Integrating QTL and expression QTL of PigGTEx to improve the accuracy of genomic prediction for small population in Yorkshire pigs

生物 数量性状位点 人口 特质 基因组选择 选择(遗传算法) 遗传学 计算生物学 人口规模 基因组学 基因组 计算机科学 单核苷酸多态性 基因 机器学习 基因型 社会学 人口学 程序设计语言
作者
Haoran Shi,He Geng,Bin Yang,Zongjun Yin,Yang Liu
出处
期刊:Animal Genetics [Wiley]
卷期号:56 (1)
标识
DOI:10.1111/age.70001
摘要

Abstract The size of the reference population and sufficient phenotypic records are crucial for the accuracy of genomic selection. However, for small‐to‐medium‐sized pig farms or breeds with limited population sizes, conducting genomic breeding programs presents significant challenges. In this study, 2295 Yorkshire pigs were selected from three distinct regions, including 1500 from an American line, 500 from a Canadian line, and 295 from a Danish line. All populations were genotyped using the GeneSeek 50K GGP Porcine HD chip. To enhance genomic selection accuracy, we proposed strategies that combined multiple populations and leveraged multi‐omics prior information. Cis‐QTL from the PigGTEx database and QTL identified through genome‐wide association studies were incorporated into the genomic feature best linear unbiased prediction (GFBLUP) model to predict the ADG100 and the BF100 traits. Results demonstrated that combining multiple populations effectively improved prediction accuracy for small population, accuracy for ADG100 increased by an average of 0.29 and accuracy for BF100 by 0.05. The GFBLUP model, which integrates biological priors, showed some improvements in prediction accuracy for the BF100 trait. Specifically, for the small population, accuracy increased by 0.09 in Scheme 1, where each population size was predicted independently. In Scheme 3, where the large population was used as a reference group to predict the small population, accuracy increased by 0.03. However, the GFBLUP model did not provide additional benefits in predicting the ADG100 trait. These findings offer effective strategies for genetic improvement in developing regions and highlight the potential of multi‐omics integration to enhance prediction models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
my196755发布了新的文献求助10
3秒前
3秒前
younghippo完成签到,获得积分10
3秒前
HHH发布了新的文献求助10
4秒前
SYLH应助amin采纳,获得10
6秒前
6秒前
桐桐应助无味采纳,获得30
7秒前
wangling2333完成签到,获得积分10
7秒前
文静映安发布了新的文献求助10
8秒前
tuzhifengyin完成签到,获得积分10
9秒前
懒羊羊完成签到,获得积分10
10秒前
学术芽完成签到,获得积分10
11秒前
rayce完成签到,获得积分10
12秒前
12秒前
my196755完成签到,获得积分10
15秒前
16秒前
曾经小伙完成签到 ,获得积分10
16秒前
lili完成签到 ,获得积分10
16秒前
爆米花应助HHH采纳,获得10
16秒前
Pandaer发布了新的文献求助10
19秒前
甘蓝型油菜完成签到,获得积分10
19秒前
哈喽发布了新的文献求助10
21秒前
温婉的翎完成签到,获得积分10
21秒前
Hello应助无味采纳,获得10
21秒前
铲铲完成签到,获得积分10
23秒前
23秒前
YangChunyan完成签到,获得积分10
23秒前
文静映安完成签到,获得积分20
25秒前
yyyy完成签到 ,获得积分20
26秒前
HHH完成签到,获得积分10
30秒前
充电宝应助旺仔Mario采纳,获得10
30秒前
30秒前
ED应助砍柴少年采纳,获得10
32秒前
GingerF应助yeqiu采纳,获得30
33秒前
英姑应助科研通管家采纳,获得10
34秒前
lightgo应助科研通管家采纳,获得10
34秒前
FashionBoy应助科研通管家采纳,获得10
34秒前
英俊的铭应助科研通管家采纳,获得10
34秒前
34秒前
lightgo应助科研通管家采纳,获得10
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950988
求助须知:如何正确求助?哪些是违规求助? 3496346
关于积分的说明 11081695
捐赠科研通 3226885
什么是DOI,文献DOI怎么找? 1784005
邀请新用户注册赠送积分活动 868114
科研通“疑难数据库(出版商)”最低求助积分说明 800993