亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integrating QTL and expression QTL of PigGTEx to improve the accuracy of genomic prediction for small population in Yorkshire pigs

生物 数量性状位点 人口 特质 基因组选择 选择(遗传算法) 遗传学 计算生物学 人口规模 基因组学 基因组 计算机科学 单核苷酸多态性 基因 机器学习 基因型 人口学 社会学 程序设计语言
作者
Haoran Shi,He Geng,Bin Yang,Zongjun Yin,Yang Liu
出处
期刊:Animal Genetics [Wiley]
卷期号:56 (1) 被引量:3
标识
DOI:10.1111/age.70001
摘要

Abstract The size of the reference population and sufficient phenotypic records are crucial for the accuracy of genomic selection. However, for small‐to‐medium‐sized pig farms or breeds with limited population sizes, conducting genomic breeding programs presents significant challenges. In this study, 2295 Yorkshire pigs were selected from three distinct regions, including 1500 from an American line, 500 from a Canadian line, and 295 from a Danish line. All populations were genotyped using the GeneSeek 50K GGP Porcine HD chip. To enhance genomic selection accuracy, we proposed strategies that combined multiple populations and leveraged multi‐omics prior information. Cis‐QTL from the PigGTEx database and QTL identified through genome‐wide association studies were incorporated into the genomic feature best linear unbiased prediction (GFBLUP) model to predict the ADG100 and the BF100 traits. Results demonstrated that combining multiple populations effectively improved prediction accuracy for small population, accuracy for ADG100 increased by an average of 0.29 and accuracy for BF100 by 0.05. The GFBLUP model, which integrates biological priors, showed some improvements in prediction accuracy for the BF100 trait. Specifically, for the small population, accuracy increased by 0.09 in Scheme 1, where each population size was predicted independently. In Scheme 3, where the large population was used as a reference group to predict the small population, accuracy increased by 0.03. However, the GFBLUP model did not provide additional benefits in predicting the ADG100 trait. These findings offer effective strategies for genetic improvement in developing regions and highlight the potential of multi‐omics integration to enhance prediction models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冬雪丶消融完成签到,获得积分0
1秒前
闪闪映易发布了新的文献求助10
2秒前
快乐的晗完成签到,获得积分10
3秒前
4秒前
闪闪映易完成签到,获得积分10
9秒前
mogekkko发布了新的文献求助10
11秒前
大模型应助XX采纳,获得10
19秒前
高傲娇完成签到,获得积分10
21秒前
yihanghh完成签到 ,获得积分10
21秒前
共享精神应助无风风采纳,获得10
21秒前
Ava应助mogekkko采纳,获得10
22秒前
赵赵完成签到,获得积分10
22秒前
我是老大应助1234567采纳,获得10
26秒前
Angela完成签到,获得积分10
27秒前
29秒前
31秒前
温彬彬Mint_完成签到,获得积分20
35秒前
XX发布了新的文献求助10
36秒前
38秒前
39秒前
世良发布了新的文献求助10
43秒前
48秒前
48秒前
阳光迎夏完成签到 ,获得积分10
49秒前
123发布了新的文献求助10
53秒前
唐静发布了新的文献求助10
53秒前
可爱的函函应助世良采纳,获得10
55秒前
58秒前
wylwyl完成签到,获得积分10
1分钟前
小蘑菇应助123采纳,获得10
1分钟前
CodeCraft应助wylwyl采纳,获得10
1分钟前
cyy发布了新的文献求助10
1分钟前
充电宝应助bai采纳,获得10
1分钟前
1分钟前
打打应助Jodie采纳,获得10
1分钟前
1分钟前
1分钟前
Juse332发布了新的文献求助10
1分钟前
简单的藏红花完成签到,获得积分10
1分钟前
linkman发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650563
求助须知:如何正确求助?哪些是违规求助? 4781019
关于积分的说明 15052302
捐赠科研通 4809466
什么是DOI,文献DOI怎么找? 2572282
邀请新用户注册赠送积分活动 1528450
关于科研通互助平台的介绍 1487286