已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fault diagnosis of rolling bearings driven by multi-channel data fusion and feature fusion under time-varying speed conditions

融合 断层(地质) 特征(语言学) 频道(广播) 传感器融合 计算机科学 模式识别(心理学) 人工智能 材料科学 地质学 电信 地震学 哲学 语言学
作者
Zonghao Jiao,Zhongwei Zhang,Y F Li,Mingyu Shao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 015125-015125
标识
DOI:10.1088/1361-6501/ad91d7
摘要

Abstract Bearings, as the core component for power transmission, are crucial in ensuring the safe and reliable operation of equipment. However, the fault information contained in a single-channel vibration signal is inherently limited. Additionally, under time-varying speed conditions, features are prone to drift, and the cross-domain diagnostic performance of most traditional domain adaptation (DA) models may drop dramatically. To solve the above problems and enhance the ability of DA models in extracting domain invariant features, this paper introduces a Multi-channel data fusion and Attention-guided Multi-feature Fusion-driven Center-aligned Network (MAMC). Initially, a multi-channel time-frequency information fusion strategy based on wavelet transform is constructed to achieve a comprehensive fusion of multi-channel data, thereby obtaining richer fault feature representations. Subsequently, a multi-branch feature fusion network, integrated with an attention mechanism, is devised to capture significant features across various dimensions and scales, resulting in more comprehensive and representative fault features. Finally, a novel Center-Aligned Domain Adaptation method (CADA) is proposed based on domain adversarial methods and center loss. By minimizing the distance between deep domain invariant features and trainable common class centers, the issue of domain shift between data is effectively alleviated, and the cross-domain diagnostic performance of DA models under the time-varying speed conditions is improved. The experimental results indicate that the MAMC method exhibits superior performance on both bearing datasets and is a promising approach for cross-domain intelligent fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
战神蛙完成签到,获得积分10
3秒前
3秒前
Na完成签到,获得积分20
4秒前
5秒前
肉球完成签到,获得积分10
5秒前
meme完成签到,获得积分20
6秒前
桐桐应助yulian采纳,获得10
6秒前
6秒前
慕青应助Na采纳,获得10
7秒前
WWXWWX发布了新的文献求助10
9秒前
10秒前
逆光夏年完成签到,获得积分20
10秒前
jiyang完成签到,获得积分10
11秒前
RJFENG发布了新的文献求助10
11秒前
7rey完成签到 ,获得积分10
12秒前
赘婿应助arthurge采纳,获得10
12秒前
12秒前
李健应助arthurge采纳,获得10
12秒前
万能图书馆应助arthurge采纳,获得10
12秒前
Jasper应助arthurge采纳,获得10
12秒前
科目三应助arthurge采纳,获得10
12秒前
SciGPT应助arthurge采纳,获得10
12秒前
15秒前
15秒前
SYLH应助普通的查查采纳,获得10
16秒前
亚稳态发布了新的文献求助10
16秒前
17秒前
四季豆完成签到,获得积分10
18秒前
yulian发布了新的文献求助10
19秒前
李健的小迷弟应助cc采纳,获得10
19秒前
xiaomeng完成签到 ,获得积分10
20秒前
20秒前
愿不负丶发布了新的文献求助10
22秒前
23秒前
Sevi应助元水云采纳,获得10
23秒前
小马发布了新的文献求助10
24秒前
香蕉觅云应助Able采纳,获得10
25秒前
25秒前
RTchen关注了科研通微信公众号
26秒前
科研通AI5应助77采纳,获得10
27秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491087
求助须知:如何正确求助?哪些是违规求助? 3077779
关于积分的说明 9150236
捐赠科研通 2770180
什么是DOI,文献DOI怎么找? 1520177
邀请新用户注册赠送积分活动 704504
科研通“疑难数据库(出版商)”最低求助积分说明 702196