A Subspace Sparsity Driven Knowledge Transfer Strategy for Dynamic Constrained Multiobjective Optimization

子空间拓扑 数学优化 多目标优化 计算机科学 约束优化 人工智能 数学
作者
Guoyu Chen,Yinan Guo,Changhe Li,Feng Wang,Dunwei Gong,Liang Yuan
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tevc.2025.3525635
摘要

Dynamic constrained multiobjective optimization problems (DCMOPs) require algorithms to quickly track the feasible Pareto optima under dynamic environments. The existing dynamic constrained multiobjective evolutionary algorithms (DCMOEAs) normally focus on the convergence speed, but cannot well guarantee distribution. To address this issue, a subspace sparsity driven knowledge transfer strategy based DCMOEA is developed in this article, called SSDKT. First, reference points are introduced to partition objective space into multiple subspaces. Subsequently, the feasibility of each subspace is determined by the distribution of all historical feasible optimal solutions in it, and defined as the sparsity of subspace. A predictor based on the gated recurrent unit (GRU) network is further constructed to estimate the sparsity under the future environment. Once a new environment appears, a subspace transfer strategy is designed to generate an initial population. In each feasible subspace, the GRU-based prediction method is developed and competed with Kalman filter to generate the initial solution under the new environment. Based on the predicted solution of the nearest feasible neighbor, a potential initial individual in each infeasible subspace is produced by transferring the corresponding knowledge. The experimental results on various benchmarks verify that, compared with several state-of-the-art DCMOEAs, the proposed algorithm achieves the most competitive performance in solving DCMOPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张坤完成签到,获得积分10
刚刚
icey完成签到,获得积分10
1秒前
沉默的盼夏完成签到,获得积分10
2秒前
张坤发布了新的文献求助10
3秒前
qi完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
9秒前
9秒前
要减肥的归尘完成签到,获得积分20
9秒前
xxfsx应助着急的以冬采纳,获得20
10秒前
happy关注了科研通微信公众号
10秒前
026发布了新的文献求助10
10秒前
qi发布了新的文献求助10
11秒前
12秒前
12秒前
Angela完成签到,获得积分10
13秒前
何嘉琪发布了新的文献求助10
14秒前
14秒前
15秒前
赘婿应助无奈的小松鼠采纳,获得10
16秒前
16秒前
JamesPei应助无奈的小松鼠采纳,获得10
16秒前
16秒前
pluto应助无奈的小松鼠采纳,获得10
16秒前
bkagyin应助无奈的小松鼠采纳,获得10
16秒前
16秒前
英姑应助无奈的小松鼠采纳,获得10
16秒前
pluto应助无奈的小松鼠采纳,获得10
16秒前
所所应助无奈的小松鼠采纳,获得10
16秒前
weiyi完成签到,获得积分10
17秒前
瞿霞发布了新的文献求助10
18秒前
19秒前
19秒前
19秒前
Rez完成签到,获得积分10
20秒前
NexusExplorer应助limuzi827采纳,获得10
20秒前
爱听歌的冬灵完成签到,获得积分10
21秒前
21秒前
22秒前
开朗的尔风完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424333
求助须知:如何正确求助?哪些是违规求助? 4538732
关于积分的说明 14163572
捐赠科研通 4455641
什么是DOI,文献DOI怎么找? 2443832
邀请新用户注册赠送积分活动 1434995
关于科研通互助平台的介绍 1412304