A Subspace Sparsity Driven Knowledge Transfer Strategy for Dynamic Constrained Multiobjective Optimization

子空间拓扑 数学优化 多目标优化 计算机科学 约束优化 人工智能 数学
作者
Guoyu Chen,Yinan Guo,Changhe Li,Feng Wang,Dunwei Gong,Liang Yuan
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tevc.2025.3525635
摘要

Dynamic constrained multiobjective optimization problems (DCMOPs) require algorithms to quickly track the feasible Pareto optima under dynamic environments. The existing dynamic constrained multiobjective evolutionary algorithms (DCMOEAs) normally focus on the convergence speed, but cannot well guarantee distribution. To address this issue, a subspace sparsity driven knowledge transfer strategy based DCMOEA is developed in this article, called SSDKT. First, reference points are introduced to partition objective space into multiple subspaces. Subsequently, the feasibility of each subspace is determined by the distribution of all historical feasible optimal solutions in it, and defined as the sparsity of subspace. A predictor based on the gated recurrent unit (GRU) network is further constructed to estimate the sparsity under the future environment. Once a new environment appears, a subspace transfer strategy is designed to generate an initial population. In each feasible subspace, the GRU-based prediction method is developed and competed with Kalman filter to generate the initial solution under the new environment. Based on the predicted solution of the nearest feasible neighbor, a potential initial individual in each infeasible subspace is produced by transferring the corresponding knowledge. The experimental results on various benchmarks verify that, compared with several state-of-the-art DCMOEAs, the proposed algorithm achieves the most competitive performance in solving DCMOPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
yaobin完成签到,获得积分10
4秒前
4秒前
范特鹅完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
terryok发布了新的文献求助10
11秒前
明明鸣发布了新的文献求助10
15秒前
灰灰发布了新的文献求助10
15秒前
发疯的游子完成签到 ,获得积分10
16秒前
17秒前
kimon完成签到,获得积分10
17秒前
小王完成签到 ,获得积分10
22秒前
bkagyin应助诗音时雨采纳,获得10
24秒前
机智的南露完成签到,获得积分10
26秒前
人间理想完成签到,获得积分10
31秒前
无糖零脂完成签到,获得积分10
32秒前
35秒前
跳跃富完成签到,获得积分10
37秒前
hh完成签到,获得积分20
37秒前
gy79210发布了新的文献求助10
40秒前
40秒前
yanjing_515完成签到,获得积分10
46秒前
刻苦不弱发布了新的文献求助20
47秒前
lichunlei完成签到,获得积分10
47秒前
桐桐应助Shuai帅采纳,获得10
48秒前
茗茗完成签到 ,获得积分10
49秒前
50秒前
55秒前
57秒前
费米子完成签到 ,获得积分10
57秒前
劲秉应助kk采纳,获得10
57秒前
香蕉发布了新的文献求助10
59秒前
JamesPei应助发发扶采纳,获得10
1分钟前
1分钟前
爱吃饭的黄哥完成签到,获得积分10
1分钟前
Rashalin发布了新的文献求助10
1分钟前
Kizi2021发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352731
求助须知:如何正确求助?哪些是违规求助? 2977735
关于积分的说明 8681231
捐赠科研通 2658733
什么是DOI,文献DOI怎么找? 1455921
科研通“疑难数据库(出版商)”最低求助积分说明 674158
邀请新用户注册赠送积分活动 664801