A Subspace Sparsity Driven Knowledge Transfer Strategy for Dynamic Constrained Multiobjective Optimization

子空间拓扑 数学优化 多目标优化 计算机科学 约束优化 人工智能 数学
作者
Guoyu Chen,Yinan Guo,Changhe Li,Feng Wang,Dunwei Gong,Liang Yuan
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tevc.2025.3525635
摘要

Dynamic constrained multiobjective optimization problems (DCMOPs) require algorithms to quickly track the feasible Pareto optima under dynamic environments. The existing dynamic constrained multiobjective evolutionary algorithms (DCMOEAs) normally focus on the convergence speed, but cannot well guarantee distribution. To address this issue, a subspace sparsity driven knowledge transfer strategy based DCMOEA is developed in this article, called SSDKT. First, reference points are introduced to partition objective space into multiple subspaces. Subsequently, the feasibility of each subspace is determined by the distribution of all historical feasible optimal solutions in it, and defined as the sparsity of subspace. A predictor based on the gated recurrent unit (GRU) network is further constructed to estimate the sparsity under the future environment. Once a new environment appears, a subspace transfer strategy is designed to generate an initial population. In each feasible subspace, the GRU-based prediction method is developed and competed with Kalman filter to generate the initial solution under the new environment. Based on the predicted solution of the nearest feasible neighbor, a potential initial individual in each infeasible subspace is produced by transferring the corresponding knowledge. The experimental results on various benchmarks verify that, compared with several state-of-the-art DCMOEAs, the proposed algorithm achieves the most competitive performance in solving DCMOPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷碧发布了新的文献求助10
1秒前
飘逸宛丝完成签到,获得积分10
2秒前
qzaima发布了新的文献求助10
2秒前
米酒完成签到,获得积分10
4秒前
step_stone给step_stone的求助进行了留言
4秒前
乐乐应助ayin采纳,获得10
5秒前
无花果应助hhh采纳,获得10
7秒前
叁壹粑粑完成签到,获得积分10
8秒前
酷酷碧完成签到,获得积分10
8秒前
9秒前
磕盐民工完成签到,获得积分10
10秒前
10秒前
忘羡222发布了新的文献求助20
10秒前
我是老大应助TT采纳,获得10
12秒前
12秒前
12秒前
雪鸽鸽完成签到,获得积分10
13秒前
完美世界应助开心青旋采纳,获得10
13秒前
LD完成签到 ,获得积分10
15秒前
xjy完成签到 ,获得积分10
15秒前
qzaima完成签到,获得积分10
15秒前
16秒前
xueshufengbujue完成签到,获得积分10
16秒前
楼寒天发布了新的文献求助10
16秒前
17秒前
科研通AI5应助111111111采纳,获得10
18秒前
18秒前
sunsunsun完成签到,获得积分10
18秒前
哎嘤斯坦完成签到,获得积分10
20秒前
20秒前
sweetbearm应助潦草采纳,获得10
21秒前
sunsunsun发布了新的文献求助10
21秒前
酷波er应助Mars采纳,获得10
22秒前
迪士尼在逃后母完成签到,获得积分10
22秒前
22秒前
我是老大应助su采纳,获得10
23秒前
hhh发布了新的文献求助10
24秒前
25秒前
科研通AI5应助魏伯安采纳,获得10
26秒前
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824