Development of a serum miRNA panel for detection of Alzheimer's Disease

小RNA 疾病 阿尔茨海默病 医学 内科学 生物 遗传学 基因
作者
Xinyu Zhang,Chang Su,Yuan Cao,Songtao Yang,Qi Qin,Yi Tang
出处
期刊:Alzheimers & Dementia [Wiley]
卷期号:20 (S2)
标识
DOI:10.1002/alz.084560
摘要

Abstract Background An urgent need exists for minimally invasive testing for accurate detection of Alzheimer’s disease (AD). Circulating microRNAs (miRNAs) have been investigated as a promising candidate biomarker for AD diagnosis and prediction because of their involvement in multiple brain signaling pathways in both health and disease. This study developed and validated a serum miRNA panel in discriminating clinically diagnosed AD from age‐matched cognitively healthy controls. Method 383 serum samples (194 AD, 189 cognitively healthy controls) were divided into three cohorts: discovery (n=59), training (n=126), and validation (n=198). In the discovery cohort, 49 miRNAs curated from literature databases were verified using individual serum sample via reserve transcriptase‐quantitative Polymerase chain amplification (RT‐qPCR). A logistic regression model was built with 11 differentially expressed miRNAs using the training cohort, and the final panel comprising 7 miRNAs with superior diagnostic performance was established. The diagnostic efficacy of the 7‐miRNA panel was further evaluated in the validation cohort by the receiver operating characteristic (ROC) analysis. Result Of the initial 49 screened serum miRNAs, 11 differentially expressed miRNAs were selected for logistic regression model construction based on their potential for detecting AD patients (AUC ≥ 0.7). After model optimization and validation via RT‐qPCR, a 7‐miRNA panel (miR‐146a‐5p, let‐7i‐5p, miR‐21‐5p, miR‐29c‐3p, miR‐92a‐3p, let‐7f‐5p, and miR‐1285‐5p) was identified with area under the curve (AUC) of 0.970 and 0.932 in the training and validation cohorts, respectively. The sensitivity of 7‐miR test was 88%, and the specificity was 85% in the validation cohort. Conclusion These findings suggest that the 7‐miRNA signature in serum serves as a novel noninvasive tool for the adjunctive diagnosis of AD. The panel shows promise for clinical application, setting the stage for future studies across diverse populations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
zzy完成签到 ,获得积分10
刚刚
小柒发布了新的文献求助10
刚刚
xinxin发布了新的文献求助10
1秒前
勤奋的琳发布了新的文献求助10
1秒前
黎黎学化学完成签到 ,获得积分10
2秒前
JamesPei应助刘一一采纳,获得10
2秒前
3秒前
3秒前
Vonnie发布了新的文献求助10
4秒前
大大发布了新的文献求助10
4秒前
怪咖关注了科研通微信公众号
4秒前
路遥知马力完成签到,获得积分10
6秒前
7秒前
林子发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
8秒前
香蕉觅云应助海比天蓝采纳,获得10
8秒前
充电宝应助海比天蓝采纳,获得10
9秒前
9秒前
yfy_fairy发布了新的文献求助10
9秒前
风时因絮发布了新的文献求助10
11秒前
11秒前
xixi完成签到 ,获得积分10
12秒前
12秒前
12秒前
zhou完成签到 ,获得积分10
12秒前
12秒前
研友_VZG7GZ应助。.。采纳,获得10
12秒前
kk雯发布了新的文献求助10
13秒前
坦率宛凝完成签到,获得积分10
13秒前
醉翁完成签到,获得积分10
13秒前
14秒前
左一酱发布了新的文献求助20
14秒前
科研巨额发布了新的文献求助10
15秒前
颜九完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521225
求助须知:如何正确求助?哪些是违规求助? 4612762
关于积分的说明 14535207
捐赠科研通 4550234
什么是DOI,文献DOI怎么找? 2493599
邀请新用户注册赠送积分活动 1474715
关于科研通互助平台的介绍 1446175