自行车
电极
材料科学
锂(药物)
硅
碳纤维
动力学
纳米技术
光电子学
复合材料
化学
复合数
医学
物理
考古
物理化学
量子力学
历史
内分泌学
作者
Wen Zhang,Zihan Zhang,Xinxin Wang,Wanming Li,Qin Chen,Weijie Zhong,Junhong Wei,Zihe Chen,Shuibin Tu,Xiancheng Wang,Yuchen Tan,Yun Zhang,Huiqiao Li,Yongming Sun,Huamin Zhou,Hui Yang
摘要
Abstract Constructing silicon (Si)‐based composite electrodes that possess high energy density, long cycle life, and fast charging capability simultaneously is critical for the development of high performance lithium‐ion batteries for mitigating range anxiety and slow charging issues in new energy vehicles. Herein, a thick silicon/carbon composite electrode with vertically aligned channels in the thickness direction (VC‐SC) is constructed by employing a bubble formation method. Both experimental characterizations and theoretical simulations confirm that the obtained vertical channel structure can effectively address the problem of sluggish ion transport caused by high tortuosity in conventional thick electrodes, conspicuously enhance reaction kinetics, reduce polarization and side reactions, mitigate stress, increase the utilization of active materials, and promote cycling stability of the thick electrode. Consequently, when paired with LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM622), the VC‐SC||NCM622 pouch type full cell (~6.0 mAh cm −2 ) exhibits significantly improved rate performance and capacity retention compared with the SC||NCM622 full cell with the conventional silicon/carbon composite electrode without channels (SC) as the anode. The assembled VC‐SC||NCM622 pouch full cell with a high energy density of 490.3 Wh kg −1 also reveals a remarkable fast charging capability at a high current density of 2.0 mA cm −2 , with a capacity retention of 72.0% after 500 cycles.
科研通智能强力驱动
Strongly Powered by AbleSci AI