Pressure aging: An effective process to liberate the power of high-pressure materials research

高压 材料科学 环境压力 聚合 纳米技术 化学物理 计算机科学 工程物理 化学 热力学 复合材料 聚合物 物理
作者
Hui Luo,Hongli Xuan,Dong Wang,Ziwan Du,Zhongyang Li,Kejun Bu,Songhao Guo,Yuhong Mao,Fujun Lan,Fuyang Liu,Yanfeng Yin,Wenming Tian,Qingyang Hu,Gang Liu,Haozhe Liu,Qiaoshi Zeng,Yang Ding,Yongping Fu,Qian Li,Shengye Jin
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (51)
标识
DOI:10.1073/pnas.2416835121
摘要

High pressure can create extreme conditions that enable the formation of novel materials and the discovery of new phenomena. However, the ability to preserve the desirable characteristics of materials obtained under high pressure has remained an elusive challenge, as the pressure-induced changes are typically reversible, except for the pressure-induced chemical reactions such as polymerization of hydrocarbons. Here, we propose the concept of “pressure aging” (PA) that enables the permanent locking-in of high-pressure structures and their associated enhanced properties in functional materials. Specifically, through the application of PA at 3.3 GPa for 24 h, the two-dimensional ferroelectric CuInP 2 S 6 exhibits a permanent change in Cu configuration after the pressure is fully released. This leads to a 2.5-fold enhancement in remanent polarization and an increase in T c from 317 K to 583 K. In contrast, the samples underwent a compression–decompression cycle but without PA showed only reversible changes in their characteristics. We elucidate the relaxation dynamics during PA using the Kohlrausch–Williams–Watts function, providing valuable insights into the temporal evolution of both structural and property changes. Furthermore, the broad applicability of PA strategy has been validated across different materials, underscoring its versatility. Notably, the pressures involved are industrially attainable, and the sample sizes are scalable. Consequently, the implementation of this impactful PA approach introduces a groundbreaking unique dimension to high-pressure research, with significant potential across various scientific domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三杠完成签到 ,获得积分10
2秒前
2秒前
草莓熊1215完成签到 ,获得积分10
7秒前
dajiejie完成签到 ,获得积分10
9秒前
Yonckham完成签到,获得积分10
10秒前
yanmh完成签到,获得积分10
12秒前
一一完成签到 ,获得积分10
16秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
我很好完成签到 ,获得积分10
22秒前
刘可完成签到 ,获得积分10
24秒前
杰_骜不驯完成签到 ,获得积分10
24秒前
rora完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助10
34秒前
牛仔完成签到 ,获得积分10
34秒前
Joy完成签到,获得积分10
38秒前
BioRick完成签到 ,获得积分10
38秒前
elsa622完成签到 ,获得积分10
38秒前
49秒前
feiyang完成签到 ,获得积分10
50秒前
lanmin完成签到,获得积分10
50秒前
Crystal完成签到 ,获得积分10
50秒前
科研通AI2S应助务实的犀牛采纳,获得10
51秒前
QSJ完成签到,获得积分10
52秒前
meimei完成签到 ,获得积分0
53秒前
量子星尘发布了新的文献求助10
1分钟前
kelien1205完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
勤劳宛菡完成签到 ,获得积分10
1分钟前
qianci2009完成签到,获得积分0
1分钟前
沧海一笑完成签到,获得积分10
1分钟前
Cell完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426900
求助须知:如何正确求助?哪些是违规求助? 4540484
关于积分的说明 14172261
捐赠科研通 4458420
什么是DOI,文献DOI怎么找? 2445015
邀请新用户注册赠送积分活动 1436024
关于科研通互助平台的介绍 1413506