“Three‐in‐one” Analysis of Proteinuria for Disease Diagnosis through Multifunctional Nanoparticles and Machine Learning

蛋白尿 纳米颗粒 疾病 纳米技术 计算机科学 材料科学 医学 内科学
作者
Yidan Wang,Jiazhu Sun,Jiuhong Yi,Ruijie Fu,Ben Liu,Yunlei Xianyu
出处
期刊:Advanced Science [Wiley]
卷期号:12 (9): e2410751-e2410751 被引量:3
标识
DOI:10.1002/advs.202410751
摘要

Abstract Urinalysis is one of the predominant tools for clinical testing owing to the abundant composition, sufficient volume, and non‐invasive acquisition of urine. As a critical component of routine urinalysis, urine protein testing measures the levels and types of proteins, enabling the early diagnosis of diseases. Traditional methods require three separate steps including strip testing, protein/creatinine ratio measurement, and electrophoresis respectively to achieve qualitative, quantitative, and classification analyses of proteins in urine with long time and cumbersome operations. Herein, this work demonstrates a “three‐in‐one” protocol to analyze the urine composition by combining multifunctional nanoparticles with machine learning. This work constructs a sensor array to analyze proteinuria by employing nanoparticles with unique optical properties, outstanding catalytic activity, diverse composition, and tunable structure as probes. Different proteins interacted with nanoprobes differently and are classified by this sensor array based on their physicochemical heterogeneities. With the aid of machine learning, the urine composition is precisely detected for the diagnosis of bladder cancer. This protocol enables quantification and classification of 5 proteinuria in 10 min without any tedious pretreatment, showing proimise for the comprehensive analysis of body fluid for early disease diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ctttt发布了新的文献求助10
刚刚
傲娇的康乃馨完成签到,获得积分20
刚刚
刚刚
we1完成签到,获得积分20
1秒前
聂青枫完成签到,获得积分10
1秒前
完美世界应助蕾蕾蕾采纳,获得10
1秒前
WSGQT完成签到,获得积分10
2秒前
qwe完成签到,获得积分10
2秒前
2秒前
科研小白完成签到,获得积分10
2秒前
2秒前
dd发布了新的文献求助10
3秒前
gdh完成签到,获得积分10
3秒前
充电宝应助漫漫亦慢慢采纳,获得10
3秒前
4秒前
碧蓝靳发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
枫溪发布了新的文献求助10
5秒前
5秒前
Kate发布了新的文献求助10
5秒前
小蘑菇应助踏实志泽采纳,获得10
5秒前
大模型应助JINtian采纳,获得10
5秒前
5秒前
Lucas应助寒冷的泽洋采纳,获得10
6秒前
Ted完成签到,获得积分10
6秒前
6秒前
JamesPei应助dengdengdeng采纳,获得10
6秒前
Owen应助ctttt采纳,获得10
6秒前
文艺的青旋完成签到 ,获得积分10
6秒前
7秒前
开放思远发布了新的文献求助10
7秒前
7秒前
丘比特应助ddjl采纳,获得10
8秒前
gdh发布了新的文献求助10
9秒前
瑁mao发布了新的文献求助10
9秒前
棠堂完成签到 ,获得积分10
9秒前
我是老大应助serendipity采纳,获得30
9秒前
斯文败类应助英俊001采纳,获得10
9秒前
冰糖葫芦五加皮完成签到,获得积分10
10秒前
LI完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665352
求助须知:如何正确求助?哪些是违规求助? 4876309
关于积分的说明 15113352
捐赠科研通 4824419
什么是DOI,文献DOI怎么找? 2582766
邀请新用户注册赠送积分活动 1536717
关于科研通互助平台的介绍 1495328