High-risk habitat radiomics model based on ultrasound images for predicting lateral neck lymph node metastasis in differentiated thyroid cancer

医学 列线图 淋巴结 甲状腺癌 甲状腺癌 放射科 肿瘤科 转移 内科学 曲线下面积 接收机工作特性 癌症 甲状腺
作者
Han Liu,Chun‐Jie Hou,Min Wei,Ke‐Feng Lu,Ying Liu,Pei Du,Litao Sun,Jinglan Tang
出处
期刊:BMC Medical Imaging [Springer Nature]
卷期号:25 (1) 被引量:1
标识
DOI:10.1186/s12880-025-01551-1
摘要

This study aims to evaluate the predictive usefulness of a habitat radiomics model based on ultrasound images for anticipating lateral neck lymph node metastasis (LLNM) in differentiated thyroid cancer (DTC), and for pinpointing high-risk habitat regions and significant radiomics traits. A group of 214 patients diagnosed with differentiated thyroid carcinoma (DTC) between August 2021 and August 2023 were included, consisting of 107 patients with confirmed postoperative lateral lymph node metastasis (LLNM) and 107 patients without metastasis or lateral cervical lymph node involvement. An additional cohort of 43 patients was recruited to serve as an independent external testing group for this study. Patients were randomly divided into training and internal testing group at an 8:2 ratio. Region of interest (ROI) was manually outlined, and habitat analysis subregions were defined using the K-means method. The ideal number of subregions (n = 5) was determined using the Calinski-Harabasz score, leading to the creation of a habitat radiomics model with 5 subregions and the identification of the high-risk habitat model. Area under the curve (AUC) values were calculated for all models to assess their validity, and predictive model nomograms were created by integrating clinical features. The internal and external testing dataset is employed to assess the predictive performance and stability of the model. In internal testing group, Habitat 3 was identified as the high-risk habitat model in the study, showing the best diagnostic efficacy among all models (AUC(CRM) vs. AUC(Habitat 3) vs. AUC(CRM + Habitat 3) = 0.84(95%CI:0.71–0.97) vs. 0.90(95%CI:0.80-1.00) vs. 0.79(95%CI:0.65–0.93)). Moreover, integrating the Habitat 3 model with clinical features and constructing nomograms enhanced the predictive capability of the combined model (AUC = 0.95(95%CI:0.88-1.00)). In this study, an independent external testing cohort was utilized to assess the model's accuracy, yielding an AUC of 0.88 (95%CI: 0.78–0.98). The integration of the High-Risk Habitats (Habitat 3) radiomics model with clinical characteristics demonstrated a high predictive accuracy in identifying LLNM. This model has the potential to offer valuable guidance to surgeons in deciding the necessity of LLNM dissection for DTC. Not applicable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zjiong发布了新的文献求助10
刚刚
快逃完成签到,获得积分10
2秒前
外星人完成签到 ,获得积分10
3秒前
木雨亦潇潇完成签到,获得积分10
4秒前
嘻嘻哈哈啊完成签到 ,获得积分10
7秒前
沉静篮球完成签到 ,获得积分10
8秒前
giao完成签到,获得积分10
8秒前
55555完成签到,获得积分20
9秒前
Struggle完成签到 ,获得积分10
10秒前
马大翔完成签到,获得积分0
14秒前
YFH关闭了YFH文献求助
14秒前
Parotodus完成签到 ,获得积分10
16秒前
宁霸完成签到,获得积分0
18秒前
万能图书馆应助zjiong采纳,获得10
20秒前
20秒前
messyknots完成签到,获得积分10
21秒前
喜洋洋完成签到 ,获得积分10
22秒前
woshiwuziq完成签到 ,获得积分10
22秒前
王春琰完成签到 ,获得积分10
23秒前
Shawn发布了新的文献求助10
23秒前
。。完成签到 ,获得积分10
24秒前
wwj1009完成签到 ,获得积分20
25秒前
CC完成签到 ,获得积分10
28秒前
琦琦国王完成签到,获得积分10
30秒前
耶耶喵喵完成签到 ,获得积分10
31秒前
可以的完成签到,获得积分10
32秒前
回来完成签到,获得积分10
34秒前
DrKe完成签到,获得积分10
35秒前
子车半烟完成签到,获得积分10
36秒前
俏皮的鞋垫完成签到,获得积分20
37秒前
青枣不甜完成签到,获得积分10
38秒前
Ploaris完成签到 ,获得积分10
41秒前
41秒前
monster完成签到 ,获得积分10
43秒前
tomato完成签到 ,获得积分10
45秒前
bvuiragybv发布了新的文献求助10
45秒前
李健的小迷弟应助Frank采纳,获得10
46秒前
淡淡的新之完成签到,获得积分10
46秒前
46秒前
茶多酚完成签到,获得积分10
47秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3571404
求助须知:如何正确求助?哪些是违规求助? 3141954
关于积分的说明 9445076
捐赠科研通 2843424
什么是DOI,文献DOI怎么找? 1562840
邀请新用户注册赠送积分活动 731366
科研通“疑难数据库(出版商)”最低求助积分说明 718524