Porous aromatic frameworks (PAFs) are a fundamental group of porous materials characterized by their distinct structural features and large surface areas. These materials are synthesized from aromatic building units linked by strong carbon–carbon bonds, which confer exceptional rigidity and long-term stability. PAFs functionalities may arise directly from the intrinsic chemistry of their building units or through the postmodification of aromatic motifs using well-defined chemical processes. Compared to other traditional porous materials such as zeolites and metallic-organic frameworks, PAFs demonstrate superior stability under severe chemical treatments due to their robust carbon–carbon bonding. Even in challenging environments, the chemical stability and ease of functionalization of PAFs demonstrate their flexibility and specificity. Research on PAFs has significantly expanded and accelerated over the past decade, necessitating a comprehensive overview of key advancements in this field. This review provides an in-depth analysis of the recent advances in the synthesis, functionalization, and dimensionality of PAFs, along with their distinctive properties and wide-ranging applications. This review explores the innovative methodologies in PAFs synthesis, the strategies for functionalizing their structures, and the manipulation of their dimensionality to tailor their properties for specific potential applications. Similarly, the key application areas, including batteries, absorption, sensors, CO2 capture, photo-/electrocatalytic usages, supercapacitors, separation, and biomedical are discussed in detail, highlighting the versatility and potential of PAFs in addressing modern scientific and industrial challenges.