罗丹明6G
化学
拉曼散射
信号(编程语言)
纳米孔
纳米技术
拉曼光谱
分析化学(期刊)
分子
光学
色谱法
材料科学
计算机科学
物理
有机化学
程序设计语言
作者
Tiying Zhu,Zhiyang Pei,Xiaofei Zhao,Jing Yu,Baoyuan Man,Ping‐Heng Tan,Zhen Li,Chao Zhang
标识
DOI:10.1021/acs.analchem.4c05301
摘要
Signal uniformity is crucial for reliable and quantifiable surface-enhanced Raman scattering (SERS) measurements. However, challenges arise due to the continuous impact of localized hottest spots and the coffee ring effect on signal uniformity. In response to this, we developed a platform featuring a hierarchical structure with Ag nanopores and microbowls (HANM) and incorporated superhydrophobic/superhydrophilic (SHB/SHL) treatments. This design enhances the hottest spot area, ensuring a strong and consistent electromagnetic field while mitigating the coffee ring effect, which leads to an even analyte distribution. This was demonstrated by analyzing rhodamine 6G (R6G, 4 μL, 10–9 M to 10–12 M) molecules at different concentrations. The 2D mapping of the SERS signal intensities from the entire dried droplet exhibited excellent uniformity. The relative standard deviation of the intensities from 200 randomly selected points was calculated to be just 3.81%, laying the foundation for the quantitative detection capability. Additionally, through bisphenol A (BPA) detection in water samples collected from five different locations, the HANM-SHB/SHL structure consistently detected BPA with a uniform signal intensity across all water samples. In conclusion, we proposed a dual-function SERS platform featuring an improved hottest spot region and the ability to avoid the coffee ring effect, offering precise and reliable molecular analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI