Development and validation of an automated Trunk Impairment Scale 2.0 scoring system using rule-based classification

后备箱 线性判别分析 物理医学与康复 平衡(能力) 康复 任务(项目管理) 计算机科学 伯格天平 人工智能 机器学习 物理疗法 医学 工程类 生态学 系统工程 病理 生物
作者
Tay Jia Yi,Zaidi Mohd Ripin,Mohamad Ikhwan Zaini Ridzwan,Muhammad Fauzinizam Razali,Yeo Ying Heng,N. A. Jaafar,Alexander Tan Wai Teng,Hazwani Binti Ahmad Yusof,Muhammad Hafiz Hanafi
标识
DOI:10.1177/09544119251317614
摘要

The Trunk Impairment Scale Version 2.0 (TIS 2.0) measures the motor impairment of the trunk after a stroke through the evaluation of dynamic sitting balance and co-ordination of trunk movement. Evaluations by physiotherapists depend on their ability in detecting minor changes in motion and observing limb movements and these can be time consuming and reduce their availability for rehabilitation work. An automated scoring system for TIS 2.0 was proposed to provide a more reproducible and standardized alternative to manual physiotherapist assessments. In the development phase, motion data from lay actors simulating stroke condition were collected using video motion capture system OpenCap. This data was utilized to create metrics and establish cut-off values for a rule-based classification. The discriminant abilities of the metrics were evaluated using the area under the curve (AUC). In the testing phase, the performance of the developed system was assessed on 19 stroke survivors (Berg Balance Scale score of 20–55) using both automated system and manual scoring by nine physiotherapists. The discriminant abilities of the features used in the dynamic sitting balance subscale are considered excellent to outstanding (AUC ≥ 0.717), and coordination subscale ranged from poor to outstanding (AUC ≥ 0.667). The automated scores aligned with physiotherapists’ scores, achieving an average percentage of agreement 71.1%. The total TIS 2.0 scores generated by the automated method showed moderate correlation with the sum of mode-determined task scores ( R = 0.526, p < 0.05). These findings suggest that the proposed automated system demonstrates comparable validity to assessments by physiotherapists.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研达人发布了新的文献求助10
1秒前
1秒前
1秒前
贝贝贝完成签到,获得积分10
1秒前
2秒前
科研通AI2S应助阿越采纳,获得10
3秒前
zej发布了新的文献求助10
4秒前
HEIKU应助燕燕于飞采纳,获得10
5秒前
adamchris应助燕燕于飞采纳,获得100
5秒前
HEIKU应助燕燕于飞采纳,获得10
5秒前
YichaoWang完成签到,获得积分10
5秒前
HEIKU应助燕燕于飞采纳,获得10
5秒前
HEIKU应助燕燕于飞采纳,获得10
5秒前
HEIKU应助燕燕于飞采纳,获得10
5秒前
刘英丽发布了新的文献求助10
6秒前
6秒前
白川关注了科研通微信公众号
6秒前
Inspiring完成签到,获得积分10
7秒前
weakie完成签到,获得积分10
8秒前
Jinna706完成签到,获得积分10
9秒前
10秒前
小二郎应助无聊的冰之采纳,获得10
10秒前
zej完成签到,获得积分10
10秒前
12秒前
ma发布了新的文献求助10
12秒前
会飞的小猪完成签到,获得积分10
13秒前
julia完成签到 ,获得积分10
13秒前
小菜鸡儿发布了新的文献求助10
15秒前
所所应助Ashan采纳,获得10
16秒前
17秒前
明亮的冰香完成签到 ,获得积分10
17秒前
18秒前
O泡果奶完成签到 ,获得积分10
18秒前
dou完成签到 ,获得积分10
18秒前
泥泞完成签到 ,获得积分10
19秒前
不爱科研完成签到 ,获得积分10
19秒前
刘英丽完成签到,获得积分10
20秒前
21秒前
龘龘龘完成签到 ,获得积分10
21秒前
21秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464175
求助须知:如何正确求助?哪些是违规求助? 3057476
关于积分的说明 9057425
捐赠科研通 2747569
什么是DOI,文献DOI怎么找? 1507398
科研通“疑难数据库(出版商)”最低求助积分说明 696533
邀请新用户注册赠送积分活动 696062