Two-Tier Data Packing in RLWE-based Homomorphic Encryption for Secure Federated Learning

同态加密 计算机科学 加密 计算机安全
作者
Yufei Zhou,Peijia Zheng,Xiaochun Cao,Jiwu Huang
标识
DOI:10.1145/3658644.3690191
摘要

Homomorphic Encryption (HE) facilitates the preservation of privacy in federated learning (FL) aggregation. However, HE imposes significant computational and communication overhead. To address this problem, data encoding methods have been introduced that enable batch processing to improving the efficiency of ciphertext usage. The existing methods simply concatenate integer or coefficients assignment in polynomials, which do not fully make use of HE based on ring learning with errors (RLWE). We present a novel two-tier data encoding approach tailored for RLWE-based HE, effectively utilizing RLWE's polynomial structure. Our method involves a dual-level data packing strategy for batch processing at both integer and polynomial levels. At the first tier (integer level), we amalgamate those quantized model data into larger integers. Beyond existing concatenation-based encoding, we introduce a new encoding method derived from the Chinese Remainder Theorem (CRT). This CRT-based method effectively mitigates overflow and error propagation concerns. At the second tier (polynomial level), we transmute the large integers into a polynomial form. Additionally, we propose a new subring decomposition method, i.e., employing ring isomorphism mappings to project multiple large integers into varied sub-polynomial rings. Our dual-tier encoding strategy offers a more flexible and effective batch HE solution. We rigorously analyze the correctness, efficiency, and security of our approach. Our extensive experimental evaluations reveal that secure FL, empowered by our dual-tier encoding technique, markedly enhances computational and communication efficiencies over prevailing batch HE methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xzy发布了新的文献求助20
刚刚
刚刚
守夜人发布了新的文献求助10
1秒前
1秒前
1秒前
珲雯发布了新的文献求助10
2秒前
2秒前
德尔塔捱斯完成签到,获得积分10
2秒前
小夏完成签到 ,获得积分0
3秒前
luuuuuu完成签到,获得积分10
3秒前
太阳alright完成签到,获得积分10
3秒前
雨辰发布了新的文献求助10
4秒前
在水一方应助lai采纳,获得10
4秒前
Yiiimmmwang完成签到,获得积分20
4秒前
FashionBoy应助小田心采纳,获得10
4秒前
Orange应助芳芳采纳,获得10
5秒前
汉堡包应助斯文黎云采纳,获得10
5秒前
通~发布了新的文献求助10
6秒前
qifeng完成签到,获得积分10
6秒前
屹舟发布了新的文献求助10
6秒前
宇文数学完成签到 ,获得积分10
7秒前
7秒前
爆米花应助大方嵩采纳,获得10
7秒前
姚文超发布了新的文献求助10
8秒前
8秒前
自由的寒香完成签到 ,获得积分10
8秒前
研友_LJQ4o8完成签到,获得积分10
9秒前
lkc发布了新的文献求助10
9秒前
9秒前
雨辰完成签到,获得积分10
9秒前
卫卫完成签到 ,获得积分10
9秒前
10秒前
现代剑成完成签到,获得积分10
11秒前
杨耑耑完成签到 ,获得积分10
11秒前
12秒前
12秒前
12秒前
12秒前
jijahui完成签到,获得积分10
12秒前
帅气惜霜发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794