甲烷
环境科学
甲烷排放
温室气体
废物管理
填埋气
环境工程
环境保护
城市固体废物
工程类
化学
地质学
海洋学
有机化学
作者
Tia R. Scarpelli,Daniel Cusworth,Riley Duren,Jinsol Kim,Joseph Heckler,Gregory P. Asner,Eben D. Thoma,Max J. Krause,Daniel Heins,Susan A. Thorneloe
标识
DOI:10.1021/acs.est.4c07572
摘要
Airborne remote sensing observations were collected at 217 landfills across 17 states in the US in 2023. We used these observations to attribute emissions to major sources, including the landfill work face, where new waste is placed at the landfill and gas-control infrastructure. Methane emissions from the work face appeared to be more prevalent than gas-control infrastructure emissions, with 52 landfills exhibiting work face emissions out of the 115 observed landfills shown to be emitting in 2023. Landfills with work face emissions were often the highest emitters, especially sites with associated renewable natural gas facilities, and the total average site emissions from these landfills accounted for 79% of the observed emissions, indicating inefficient gas capture at these sites. Landfills with work face emissions also displayed the greatest disparity between observed emission rates and hourly emission rates that we estimated using annual emissions reported to the US EPA's Greenhouse Gas Reporting Program. Work face emissions present a major opportunity for methane mitigation: Observed emissions from work face emitting-landfills in this study were equivalent to 15% of US methane emissions from municipal solid waste landfills in 2022, as reported in the 2024 Greenhouse Gas Inventory, though these landfills accounted for only 4% of open sites in the US. As the 217 landfills in this study cover only 17% of open landfills in the US, the total mitigation potential is likely greater. Using remote sensing, we find that the largest contributor to observed methane emissions at US landfills is the landfill work face, an area of the landfill often left out of the required monitoring and traditional emissions accounting methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI