Advanced AI-Driven Prediction of Pregnancy-Related Adverse Drug Reactions

药品 怀孕 机器学习 概化理论 更安全的 人口 药物流行病学 支持向量机 不良事件报告系统 计算机科学 医学 药理学 人工智能 统计 生物 计算机安全 遗传学 数学 环境卫生 药方
作者
Jinfu Peng,Li Fu,Guoping Yang,Dongsheng Cao
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (24): 9286-9298
标识
DOI:10.1021/acs.jcim.4c01657
摘要

Ensuring drug safety during pregnancy is critical due to the potential risks to both the mother and fetus. However, the exclusion of pregnant women from clinical trials complicates the assessment of adverse drug reactions (ADRs) in this population. This study aimed to develop and validate risk prediction models for pregnancy-related ADRs of drugs using advanced Machine Learning (ML) and Deep Learning (DL) techniques, leveraging real-world data from the FDA Adverse Event Reporting System. We explored three methods─Information Component, Reporting Odds Ratio, and 95% confidence interval of ROR─for classifying drugs into high-risk and low-risk categories. DL models, including Directed Message Passing Neural Networks (DMPNN), Graph Neural Networks, and Graph Convolutional Networks, were developed and compared to traditional ML models like Random Forest, Support Vector Machines, and XGBoost. Among these, the DMPNN model, which integrated molecular graph information and molecular descriptors, exhibited the highest predictive performance, particularly at the preferred term level. The model was validated against external data sets from SIDER and DailyMed, demonstrating strong generalizability. Additionally, the model was applied to assess the risk of 22 oral hypoglycemic drugs, and potential substructure alerts for pregnancy-related ADRs were identified. These findings suggest that the DMPNN model is a valuable tool for predicting ADRs in pregnant women, offering significant advancement in drug safety assessment and providing crucial insights for safer medication use during pregnancy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一看论文就困完成签到,获得积分10
1秒前
驼鹿队长应助哭泣的三问采纳,获得40
2秒前
唐糖发布了新的文献求助10
3秒前
3秒前
努力毕业的胖秋完成签到,获得积分10
3秒前
今后应助张若含采纳,获得10
4秒前
5秒前
5秒前
wangjin完成签到,获得积分10
5秒前
许元冬发布了新的文献求助10
5秒前
半吊子完成签到,获得积分10
5秒前
zzz完成签到,获得积分20
5秒前
6秒前
皮卡发布了新的文献求助10
6秒前
金金肖完成签到,获得积分10
6秒前
cc发布了新的文献求助10
6秒前
6秒前
7秒前
鲤鱼幼晴完成签到,获得积分10
7秒前
流北爷发布了新的文献求助10
7秒前
8秒前
Jimmy发布了新的文献求助10
8秒前
科目三应助杨雪妮采纳,获得10
10秒前
Xie发布了新的文献求助10
10秒前
zhc完成签到,获得积分20
10秒前
飘逸的花生完成签到,获得积分20
10秒前
kx完成签到,获得积分10
10秒前
11秒前
暴龙战神发布了新的文献求助10
11秒前
海中有月完成签到,获得积分10
12秒前
耳机单蹦发布了新的文献求助10
12秒前
金金肖发布了新的文献求助10
12秒前
彭于晏应助芳华正茂采纳,获得10
13秒前
123456完成签到,获得积分10
13秒前
14秒前
爱尚Coco完成签到,获得积分10
15秒前
Xie完成签到,获得积分10
15秒前
香蕉觅云应助机灵的白羊采纳,获得10
16秒前
传奇3应助LingO采纳,获得10
16秒前
Raien发布了新的文献求助10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954916
求助须知:如何正确求助?哪些是违规求助? 3501031
关于积分的说明 11101644
捐赠科研通 3231451
什么是DOI,文献DOI怎么找? 1786425
邀请新用户注册赠送积分活动 870050
科研通“疑难数据库(出版商)”最低求助积分说明 801785