Advanced AI-Driven Prediction of Pregnancy-Related Adverse Drug Reactions

药品 怀孕 药物反应 计算机科学 医学 药理学 人工智能 化学 生物 遗传学
作者
Jinfu Peng,Li Fu,Guoping Yang,Dongsheng Cao
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01657
摘要

Ensuring drug safety during pregnancy is critical due to the potential risks to both the mother and fetus. However, the exclusion of pregnant women from clinical trials complicates the assessment of adverse drug reactions (ADRs) in this population. This study aimed to develop and validate risk prediction models for pregnancy-related ADRs of drugs using advanced Machine Learning (ML) and Deep Learning (DL) techniques, leveraging real-world data from the FDA Adverse Event Reporting System. We explored three methods─Information Component, Reporting Odds Ratio, and 95% confidence interval of ROR─for classifying drugs into high-risk and low-risk categories. DL models, including Directed Message Passing Neural Networks (DMPNN), Graph Neural Networks, and Graph Convolutional Networks, were developed and compared to traditional ML models like Random Forest, Support Vector Machines, and XGBoost. Among these, the DMPNN model, which integrated molecular graph information and molecular descriptors, exhibited the highest predictive performance, particularly at the preferred term level. The model was validated against external data sets from SIDER and DailyMed, demonstrating strong generalizability. Additionally, the model was applied to assess the risk of 22 oral hypoglycemic drugs, and potential substructure alerts for pregnancy-related ADRs were identified. These findings suggest that the DMPNN model is a valuable tool for predicting ADRs in pregnant women, offering significant advancement in drug safety assessment and providing crucial insights for safer medication use during pregnancy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满意绿柳发布了新的文献求助10
3秒前
Gg发布了新的文献求助10
4秒前
raida完成签到 ,获得积分10
4秒前
无情宝川完成签到,获得积分10
4秒前
4秒前
cy完成签到,获得积分10
5秒前
失眠的念瑶完成签到 ,获得积分10
5秒前
程克勤完成签到,获得积分10
7秒前
SciGPT应助隐形白开水采纳,获得10
7秒前
牙签撬地球完成签到,获得积分0
10秒前
可爱的函函应助mitty采纳,获得10
10秒前
10秒前
老夫子完成签到,获得积分10
10秒前
11秒前
11秒前
NexusExplorer应助科研通管家采纳,获得30
11秒前
小马甲应助科研通管家采纳,获得30
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
搜集达人应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
12秒前
天天快乐应助宸宣宝贝采纳,获得10
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
hl应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
852应助科研通管家采纳,获得10
12秒前
大模型应助科研通管家采纳,获得10
12秒前
田様应助科研通管家采纳,获得10
12秒前
12秒前
不配.应助科研通管家采纳,获得30
13秒前
坚强不言发布了新的文献求助10
15秒前
追梦人2016完成签到 ,获得积分10
15秒前
Ff20001115发布了新的文献求助30
19秒前
Gg完成签到,获得积分10
22秒前
隐形白开水完成签到,获得积分10
22秒前
21发布了新的文献求助10
22秒前
23秒前
Owen应助Gg采纳,获得10
25秒前
坚强不言完成签到,获得积分10
25秒前
30秒前
高分求助中
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
中国百部新生物碱的化学研究 500
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3178357
求助须知:如何正确求助?哪些是违规求助? 2829345
关于积分的说明 7971013
捐赠科研通 2490743
什么是DOI,文献DOI怎么找? 1327793
科研通“疑难数据库(出版商)”最低求助积分说明 635338
版权声明 602904