清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Predicting transient performance of a heavy-duty gaseous-fuelled engine using combined phenomenological and machine learning models

汽车工程 测功机 温室气体 废气再循环 柴油机 瞬态(计算机编程) 燃烧 工程类 环境科学 内燃机 计算机科学 化学 生态学 有机化学 生物 操作系统
作者
Navid Balazadeh,Sandeep Munshi,Mahdi Shahbakhti,Gordon McTaggart-Cowan
出处
期刊:International Journal of Engine Research [SAGE]
标识
DOI:10.1177/14680874241305732
摘要

Decarbonizing long-haul goods transportation poses a substantial challenge. High-efficiency natural gas (NG) engines, which retain the efficiency of a diesel engine but reduce the carbon content of the fuel, offer substantial potential for near-term greenhouse gas (GHG) reductions. A fast-running model that can predict engine performance, GHG and air pollutant emissions is critical to assessing this approach for different applications and vehicle drivetrain configurations. This paper presents the development, validation and application of an engine system model that adapts GT-SUITE™’s phenomenological DI-Pulse predictive model to predict the performance and emissions of a 6-cylinder NG engine using a high pressure direct-injection combustion process. The model includes the engine air exchange system, enabling the prediction of the engine and in-cylinder conditions and overall performance over transient drive cycles. The engine model with a fixed set of calibration parameters captures the complex high-pressure direct injection combustion process and generates time-resolved parameters that are fed into a coupled machine learning model to predict emissions, including nitrogen oxide (NOx) and methane (CH 4 ) emissions. While the 1-D model’s predictions for CH 4 were not accurate, coupling the 1-D engine model with a machine learning model has been shown to substantially improve the estimation of CH 4 emissions and allow accurate prediction of engine total GHG emissions over different duty cycles. The model has been validated using transient engine dynamometer data and is then applied to assess performance and emissions over several regulatory and real-world long-haul drive cycles. The model showed an average error of less than 5% in steady operation. Cumulative errors of NOx and CH 4 emissions in studied cycles were also less than 10%. The results showed that CH 4 share in total GHG emissions ranges from 0.2% to 1.4% over various drive cycles. By predicting engine performance and emissions, the developed combined model has considerable potential for use in engine evaluation studies, especially when combined with new technologies across different duty cycles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
25秒前
ceeray23发布了新的文献求助20
29秒前
JESI完成签到,获得积分10
37秒前
sube完成签到 ,获得积分10
38秒前
jesi完成签到,获得积分10
44秒前
赵芳完成签到,获得积分10
59秒前
Cassie关注了科研通微信公众号
1分钟前
vbnn完成签到 ,获得积分10
1分钟前
1分钟前
缓慢雨南发布了新的文献求助10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
1分钟前
kgf完成签到 ,获得积分20
1分钟前
曹国庆完成签到 ,获得积分10
2分钟前
orixero应助ceeray23采纳,获得20
2分钟前
斯文败类应助ceeray23采纳,获得20
2分钟前
2分钟前
2分钟前
袁青寒发布了新的文献求助10
2分钟前
科研通AI2S应助ceeray23采纳,获得20
2分钟前
热带蚂蚁完成签到 ,获得积分10
2分钟前
云锋完成签到,获得积分10
3分钟前
Cassie完成签到,获得积分10
3分钟前
3分钟前
ceeray23发布了新的文献求助20
3分钟前
jsinm-thyroid完成签到 ,获得积分10
3分钟前
qinghe完成签到 ,获得积分10
3分钟前
铁瓜李完成签到 ,获得积分10
3分钟前
领导范儿应助科研通管家采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
4分钟前
Japrin完成签到,获得积分10
4分钟前
霜降完成签到,获得积分10
4分钟前
5分钟前
abc完成签到 ,获得积分0
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599887
求助须知:如何正确求助?哪些是违规求助? 4685622
关于积分的说明 14838712
捐赠科研通 4672749
什么是DOI,文献DOI怎么找? 2538369
邀请新用户注册赠送积分活动 1505574
关于科研通互助平台的介绍 1470965