Predicting transient performance of a heavy-duty gaseous-fuelled engine using combined phenomenological and machine learning models

汽车工程 测功机 温室气体 废气再循环 柴油机 瞬态(计算机编程) 燃烧 工程类 环境科学 内燃机 计算机科学 化学 生态学 生物 操作系统 有机化学
作者
Navid Balazadeh,Sandeep Munshi,Mahdi Shahbakhti,Gordon McTaggart-Cowan
出处
期刊:International Journal of Engine Research [SAGE]
标识
DOI:10.1177/14680874241305732
摘要

Decarbonizing long-haul goods transportation poses a substantial challenge. High-efficiency natural gas (NG) engines, which retain the efficiency of a diesel engine but reduce the carbon content of the fuel, offer substantial potential for near-term greenhouse gas (GHG) reductions. A fast-running model that can predict engine performance, GHG and air pollutant emissions is critical to assessing this approach for different applications and vehicle drivetrain configurations. This paper presents the development, validation and application of an engine system model that adapts GT-SUITE™’s phenomenological DI-Pulse predictive model to predict the performance and emissions of a 6-cylinder NG engine using a high pressure direct-injection combustion process. The model includes the engine air exchange system, enabling the prediction of the engine and in-cylinder conditions and overall performance over transient drive cycles. The engine model with a fixed set of calibration parameters captures the complex high-pressure direct injection combustion process and generates time-resolved parameters that are fed into a coupled machine learning model to predict emissions, including nitrogen oxide (NOx) and methane (CH 4 ) emissions. While the 1-D model’s predictions for CH 4 were not accurate, coupling the 1-D engine model with a machine learning model has been shown to substantially improve the estimation of CH 4 emissions and allow accurate prediction of engine total GHG emissions over different duty cycles. The model has been validated using transient engine dynamometer data and is then applied to assess performance and emissions over several regulatory and real-world long-haul drive cycles. The model showed an average error of less than 5% in steady operation. Cumulative errors of NOx and CH 4 emissions in studied cycles were also less than 10%. The results showed that CH 4 share in total GHG emissions ranges from 0.2% to 1.4% over various drive cycles. By predicting engine performance and emissions, the developed combined model has considerable potential for use in engine evaluation studies, especially when combined with new technologies across different duty cycles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chaiyuan完成签到 ,获得积分0
刚刚
mong完成签到,获得积分10
刚刚
刚刚
正直的半梅完成签到,获得积分10
1秒前
黑白风发布了新的文献求助30
3秒前
神勇语柳完成签到,获得积分10
3秒前
xiaoxixixier完成签到 ,获得积分10
3秒前
科研通AI6应助xyy采纳,获得30
4秒前
大气早晨发布了新的文献求助10
4秒前
Ava应助wang1030采纳,获得10
6秒前
冰激凌发布了新的文献求助10
7秒前
7秒前
胆大璐完成签到 ,获得积分10
8秒前
科研通AI2S应助阔达皮卡丘采纳,获得10
9秒前
9秒前
完美世界应助vily采纳,获得10
9秒前
奶油蜜豆卷完成签到,获得积分10
10秒前
lijiaoyang完成签到,获得积分10
11秒前
Diana完成签到,获得积分10
11秒前
Hello应助hbhbj采纳,获得10
11秒前
11秒前
懵懂小尉完成签到,获得积分10
12秒前
zw发布了新的文献求助10
13秒前
13秒前
JamesPei应助那都通采纳,获得10
14秒前
乐乐应助嗡嗡嗡采纳,获得10
14秒前
泡芙完成签到,获得积分10
15秒前
16秒前
温暖香菱完成签到,获得积分10
16秒前
17秒前
苹果完成签到,获得积分10
17秒前
ruohanyu完成签到 ,获得积分10
17秒前
如风随水发布了新的文献求助10
18秒前
NexusExplorer应助ww采纳,获得10
18秒前
18秒前
18秒前
ssy发布了新的文献求助20
19秒前
WANJCE发布了新的文献求助10
20秒前
Aaron完成签到,获得积分10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5530788
求助须知:如何正确求助?哪些是违规求助? 4619762
关于积分的说明 14570057
捐赠科研通 4559290
什么是DOI,文献DOI怎么找? 2498318
邀请新用户注册赠送积分活动 1478269
关于科研通互助平台的介绍 1449838