Predicting transient performance of a heavy-duty gaseous-fuelled engine using combined phenomenological and machine learning models

汽车工程 测功机 温室气体 废气再循环 柴油机 瞬态(计算机编程) 燃烧 工程类 环境科学 内燃机 计算机科学 化学 生态学 生物 操作系统 有机化学
作者
Navid Balazadeh,Sandeep Munshi,Mahdi Shahbakhti,Gordon McTaggart-Cowan
出处
期刊:International Journal of Engine Research [SAGE]
标识
DOI:10.1177/14680874241305732
摘要

Decarbonizing long-haul goods transportation poses a substantial challenge. High-efficiency natural gas (NG) engines, which retain the efficiency of a diesel engine but reduce the carbon content of the fuel, offer substantial potential for near-term greenhouse gas (GHG) reductions. A fast-running model that can predict engine performance, GHG and air pollutant emissions is critical to assessing this approach for different applications and vehicle drivetrain configurations. This paper presents the development, validation and application of an engine system model that adapts GT-SUITE™’s phenomenological DI-Pulse predictive model to predict the performance and emissions of a 6-cylinder NG engine using a high pressure direct-injection combustion process. The model includes the engine air exchange system, enabling the prediction of the engine and in-cylinder conditions and overall performance over transient drive cycles. The engine model with a fixed set of calibration parameters captures the complex high-pressure direct injection combustion process and generates time-resolved parameters that are fed into a coupled machine learning model to predict emissions, including nitrogen oxide (NOx) and methane (CH 4 ) emissions. While the 1-D model’s predictions for CH 4 were not accurate, coupling the 1-D engine model with a machine learning model has been shown to substantially improve the estimation of CH 4 emissions and allow accurate prediction of engine total GHG emissions over different duty cycles. The model has been validated using transient engine dynamometer data and is then applied to assess performance and emissions over several regulatory and real-world long-haul drive cycles. The model showed an average error of less than 5% in steady operation. Cumulative errors of NOx and CH 4 emissions in studied cycles were also less than 10%. The results showed that CH 4 share in total GHG emissions ranges from 0.2% to 1.4% over various drive cycles. By predicting engine performance and emissions, the developed combined model has considerable potential for use in engine evaluation studies, especially when combined with new technologies across different duty cycles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助果子采纳,获得10
1秒前
单薄剑愁完成签到,获得积分10
1秒前
6666发布了新的文献求助30
2秒前
量子星尘发布了新的文献求助10
3秒前
优秀冰真发布了新的文献求助10
3秒前
3秒前
4秒前
fairyinn完成签到 ,获得积分10
7秒前
binz完成签到,获得积分0
7秒前
Wally完成签到,获得积分10
7秒前
9秒前
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
大个应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得10
10秒前
10秒前
今后应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
10秒前
Orange应助科研通管家采纳,获得50
10秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
13秒前
14秒前
15秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5767230
求助须知:如何正确求助?哪些是违规求助? 5568895
关于积分的说明 15414730
捐赠科研通 4901226
什么是DOI,文献DOI怎么找? 2636925
邀请新用户注册赠送积分活动 1585104
关于科研通互助平台的介绍 1540273