Predicting transient performance of a heavy-duty gaseous-fuelled engine using combined phenomenological and machine learning models

汽车工程 测功机 温室气体 废气再循环 柴油机 瞬态(计算机编程) 燃烧 工程类 环境科学 内燃机 计算机科学 化学 生态学 生物 操作系统 有机化学
作者
Navid Balazadeh,Sandeep Munshi,Mahdi Shahbakhti,Gordon McTaggart-Cowan
出处
期刊:International Journal of Engine Research [SAGE Publishing]
标识
DOI:10.1177/14680874241305732
摘要

Decarbonizing long-haul goods transportation poses a substantial challenge. High-efficiency natural gas (NG) engines, which retain the efficiency of a diesel engine but reduce the carbon content of the fuel, offer substantial potential for near-term greenhouse gas (GHG) reductions. A fast-running model that can predict engine performance, GHG and air pollutant emissions is critical to assessing this approach for different applications and vehicle drivetrain configurations. This paper presents the development, validation and application of an engine system model that adapts GT-SUITE™’s phenomenological DI-Pulse predictive model to predict the performance and emissions of a 6-cylinder NG engine using a high pressure direct-injection combustion process. The model includes the engine air exchange system, enabling the prediction of the engine and in-cylinder conditions and overall performance over transient drive cycles. The engine model with a fixed set of calibration parameters captures the complex high-pressure direct injection combustion process and generates time-resolved parameters that are fed into a coupled machine learning model to predict emissions, including nitrogen oxide (NOx) and methane (CH 4 ) emissions. While the 1-D model’s predictions for CH 4 were not accurate, coupling the 1-D engine model with a machine learning model has been shown to substantially improve the estimation of CH 4 emissions and allow accurate prediction of engine total GHG emissions over different duty cycles. The model has been validated using transient engine dynamometer data and is then applied to assess performance and emissions over several regulatory and real-world long-haul drive cycles. The model showed an average error of less than 5% in steady operation. Cumulative errors of NOx and CH 4 emissions in studied cycles were also less than 10%. The results showed that CH 4 share in total GHG emissions ranges from 0.2% to 1.4% over various drive cycles. By predicting engine performance and emissions, the developed combined model has considerable potential for use in engine evaluation studies, especially when combined with new technologies across different duty cycles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
17完成签到,获得积分20
3秒前
Lucas应助phw2333采纳,获得20
3秒前
Joe完成签到,获得积分10
5秒前
5秒前
berg发布了新的文献求助10
7秒前
万能图书馆应助wang采纳,获得10
8秒前
boogie发布了新的文献求助30
8秒前
量子星尘发布了新的文献求助10
8秒前
17发布了新的文献求助10
8秒前
李健的小迷弟应助ningwu采纳,获得10
8秒前
情怀应助mmm采纳,获得30
9秒前
Aprilapple发布了新的文献求助10
9秒前
我是老大应助zjh采纳,获得10
10秒前
11秒前
m___发布了新的文献求助10
11秒前
安于心发布了新的文献求助10
11秒前
科研路上互帮互助,共同进步完成签到 ,获得积分10
12秒前
13秒前
Harry完成签到,获得积分10
14秒前
14秒前
benbenca发布了新的文献求助10
15秒前
可乐SAMA完成签到,获得积分10
17秒前
18秒前
18秒前
脑洞疼应助安于心采纳,获得10
19秒前
小宋发布了新的文献求助10
20秒前
卫绯发布了新的文献求助10
23秒前
文静千凡发布了新的文献求助10
23秒前
mmz完成签到,获得积分10
24秒前
紫紫完成签到,获得积分10
26秒前
28秒前
29秒前
lll完成签到,获得积分10
29秒前
小宋完成签到,获得积分10
30秒前
32秒前
zjh发布了新的文献求助10
32秒前
赛猪发布了新的文献求助10
33秒前
mmm发布了新的文献求助30
33秒前
RAmos_1982完成签到,获得积分10
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952529
求助须知:如何正确求助?哪些是违规求助? 3497949
关于积分的说明 11089475
捐赠科研通 3228442
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868992
科研通“疑难数据库(出版商)”最低求助积分说明 801309