Exploring the Solution-Based Metathesis Reaction Pathway Toward Cu3Si Formation

油胺 X射线光电子能谱 无定形固体 材料科学 透射电子显微镜 相(物质) 基质(化学分析) 纳米颗粒 扫描透射电子显微镜 化学工程 结晶学 纳米技术 化学 有机化学 工程类 复合材料
作者
Lily J. Moloney,Leslie A. Kraynak,Jeffrey Ma,Amy L. Prieto
出处
期刊:Chemistry of Materials [American Chemical Society]
标识
DOI:10.1021/acs.chemmater.4c01638
摘要

Copper silicide, Cu3Si, has a wide range of applications, including catalysis, photovoltaics, and energy storage. The complexity of the Cu–Si phase diagram makes synthesizing one phase with control over stoichiometry and high purity challenging. The specific Cu3Si phase described herein is more typically made by using traditional solid-state methods. We demonstrate that Cu3Si@Si/SiO2 matrix particles can be successfully synthesized by combining colloidal solution and metathesis methods. The reaction pathway is surprisingly complex and nuanced. Using powder X-ray diffraction, transmission electron microscopy, scanning election microscopy, and energy dispersive X-ray spectroscopy (EDS), it was found that rather than Mg2Si and CuCl2 in oleylamine (OLA) proceeding directly to Cu3Si@Si/SiO2 matrix particles (as you might expect in the solid state), it proceeds through a two-step process. In the first step, Mg2Si quickly reduces the Cu–OLA complex to Cu0, resulting in MgCl2 and destabilized, amorphous Si matrices, which are capped with OLA. Next, OLA aids in shuttling Cu to the Si matrix, and Cu diffuses into the destabilized, amorphous structure to form Cu3Si particles embedded in a Si/SiO2 matrix. We show that the solvent is critical for controlling this reaction. Finally, the matrix encasing the Cu3Si particles was selectively analyzed by scanning transmission electron microscopy/EDS, electrochemical cycling, and X-ray photoelectron spectroscopy. This revealed that the matrix contains active Si with minimal amounts of Mg, and the matrix readily oxidizes, mainly to SiO2. This unique synthesis of Cu3Si@Si/SiO2 matrix particles, although still diffusion-limited, combines solution and metathesis methods to lower the high formation energy barrier commonly observed in solid-state methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大树完成签到 ,获得积分10
1秒前
2秒前
鄙视注册完成签到,获得积分0
4秒前
4秒前
Hello应助科研毛毛虫采纳,获得10
5秒前
smile发布了新的文献求助10
5秒前
不配.应助s615采纳,获得80
6秒前
8秒前
杂化轨道退役研究员完成签到,获得积分10
10秒前
lpjianai168发布了新的文献求助10
10秒前
Alpha不吃小蛋糕完成签到,获得积分10
11秒前
烂漫的以冬应助xintianli采纳,获得10
14秒前
研友_VZG7GZ应助吴艳琼采纳,获得10
15秒前
15秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
20秒前
21秒前
张静怡发布了新的文献求助10
21秒前
22秒前
大意的雨双完成签到 ,获得积分10
23秒前
香蕉觅云应助dsds采纳,获得10
23秒前
科研通AI5应助dsds采纳,获得30
23秒前
临子发布了新的文献求助10
24秒前
24秒前
大模型应助Yi采纳,获得10
24秒前
27秒前
cen发布了新的文献求助10
29秒前
共享精神应助呆萌朝雪采纳,获得10
29秒前
飘逸访蕊完成签到,获得积分10
32秒前
完美世界应助djy采纳,获得10
33秒前
Jasper应助doctorlee采纳,获得10
35秒前
35秒前
uwasa完成签到,获得积分10
38秒前
39秒前
呆萌朝雪发布了新的文献求助10
40秒前
光亮外套完成签到 ,获得积分10
41秒前
42秒前
量子星尘发布了新的文献求助10
43秒前
43秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4208741
求助须知:如何正确求助?哪些是违规求助? 3742913
关于积分的说明 11781822
捐赠科研通 3412747
什么是DOI,文献DOI怎么找? 1872810
邀请新用户注册赠送积分活动 927420
科研通“疑难数据库(出版商)”最低求助积分说明 837073