Exploring the Solution-Based Metathesis Reaction Pathway Toward Cu3Si Formation

油胺 X射线光电子能谱 无定形固体 材料科学 透射电子显微镜 相(物质) 基质(化学分析) 纳米颗粒 扫描透射电子显微镜 化学工程 结晶学 纳米技术 化学 有机化学 工程类 复合材料
作者
Lily J. Moloney,Leslie A. Kraynak,Jeffrey Ma,Amy L. Prieto
出处
期刊:Chemistry of Materials [American Chemical Society]
标识
DOI:10.1021/acs.chemmater.4c01638
摘要

Copper silicide, Cu3Si, has a wide range of applications, including catalysis, photovoltaics, and energy storage. The complexity of the Cu–Si phase diagram makes synthesizing one phase with control over stoichiometry and high purity challenging. The specific Cu3Si phase described herein is more typically made by using traditional solid-state methods. We demonstrate that Cu3Si@Si/SiO2 matrix particles can be successfully synthesized by combining colloidal solution and metathesis methods. The reaction pathway is surprisingly complex and nuanced. Using powder X-ray diffraction, transmission electron microscopy, scanning election microscopy, and energy dispersive X-ray spectroscopy (EDS), it was found that rather than Mg2Si and CuCl2 in oleylamine (OLA) proceeding directly to Cu3Si@Si/SiO2 matrix particles (as you might expect in the solid state), it proceeds through a two-step process. In the first step, Mg2Si quickly reduces the Cu–OLA complex to Cu0, resulting in MgCl2 and destabilized, amorphous Si matrices, which are capped with OLA. Next, OLA aids in shuttling Cu to the Si matrix, and Cu diffuses into the destabilized, amorphous structure to form Cu3Si particles embedded in a Si/SiO2 matrix. We show that the solvent is critical for controlling this reaction. Finally, the matrix encasing the Cu3Si particles was selectively analyzed by scanning transmission electron microscopy/EDS, electrochemical cycling, and X-ray photoelectron spectroscopy. This revealed that the matrix contains active Si with minimal amounts of Mg, and the matrix readily oxidizes, mainly to SiO2. This unique synthesis of Cu3Si@Si/SiO2 matrix particles, although still diffusion-limited, combines solution and metathesis methods to lower the high formation energy barrier commonly observed in solid-state methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮华完成签到,获得积分10
1秒前
sheep发布了新的文献求助10
1秒前
小二郎应助123采纳,获得10
1秒前
壮观的雨柏完成签到,获得积分10
2秒前
清漪完成签到,获得积分10
2秒前
6秒前
6秒前
7秒前
8秒前
风清扬应助hahha采纳,获得30
8秒前
Anima应助小刘采纳,获得10
8秒前
9秒前
LLLxy完成签到,获得积分20
10秒前
Ava应助愤怒的小兔子采纳,获得10
10秒前
11秒前
11秒前
汪小楠吖发布了新的文献求助10
11秒前
12秒前
SciGPT应助汪金采纳,获得10
12秒前
在水一方应助BurgerKing采纳,获得10
12秒前
典雅代云发布了新的文献求助10
13秒前
帅气东蒽完成签到,获得积分10
13秒前
脆脆鲨发布了新的文献求助10
14秒前
雾醉舟完成签到,获得积分10
14秒前
小阳阳5010完成签到 ,获得积分10
17秒前
wsws发布了新的文献求助10
17秒前
22秒前
23秒前
25秒前
乐乐应助科研通管家采纳,获得10
25秒前
脑洞疼应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
尹梦成应助科研通管家采纳,获得10
25秒前
Ava应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
共享精神应助科研通管家采纳,获得10
25秒前
Lucas应助科研通管家采纳,获得10
26秒前
珉志完成签到,获得积分10
26秒前
小杭76应助科研通管家采纳,获得10
26秒前
大模型应助科研通管家采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288713
求助须知:如何正确求助?哪些是违规求助? 4440504
关于积分的说明 13824786
捐赠科研通 4322792
什么是DOI,文献DOI怎么找? 2372749
邀请新用户注册赠送积分活动 1368214
关于科研通互助平台的介绍 1332093