已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of tissue and clinical thrombectomy outcome in acute ischaemic stroke using deep learning

医学 冲程(发动机) 急性中风 神经影像学 物理医学与康复 内科学 心脏病学 组织纤溶酶原激活剂 机械工程 工程类 精神科
作者
Mischa Braun,Kristin Stoll,Lucas Peter,Daniel Kürsten,Florian Welle,Hans R. Schneider,Max Wawrzyniak,Daniel Kaiser,Gordian Prasse,Cindy Richter,Elias Kellner,Marco Reisert,Julian Klingbeil,Anika Stockert,Karl‐Titus Hoffmann,Gerik Scheuermann,Christina Gillmann,Dorothee Saur
出处
期刊:Brain [Oxford University Press]
标识
DOI:10.1093/brain/awaf013
摘要

Abstract The advent of endovascular thrombectomy has significantly improved outcomes for stroke patients with intracranial large vessel occlusion, yet individual benefits can vary widely. As demand for thrombectomy rises and geographic disparities in stroke care access persist, there is a growing need for predictive models that quantify individual benefits. However, current imaging methods for estimating outcomes may not fully capture the dynamic nature of cerebral ischemia and lack a patient-specific assessment of thrombectomy benefits. Our study introduces a deep learning approach to predict individual responses to thrombectomy in acute ischemic stroke patients. The proposed models provide predictions for both tissue and clinical outcomes under two scenarios: one assuming successful reperfusion and another assuming unsuccessful reperfusion. The resulting simulations of penumbral salvage and difference in NIHSS at discharge quantify the potential individual benefits of the intervention. Our models were developed on an extensive dataset from routine stroke care, which included 405 ischemic stroke patients who underwent thrombectomy. We used acute data for training (n = 304), including multimodal CT imaging and clinical characteristics, along with post hoc markers like thrombectomy success, final infarct localization, and NIHSS at discharge. We benchmarked our tissue outcome predictions under the observed reperfusion scenario against a thresholding-based clinical method and a generalised linear model. Our deep-learning model showed significant superiority, with a mean Dice score of 0.48 on internal (n = 50) and 0.52 on external (n = 51) test data, versus 0.26/0.36 and 0.34/0.35 for the baselines, respectively. The NIHSS sum score prediction achieved median absolute errors of 1.5 NIHSS points on the internal test dataset and 3.0 NIHSS points on the external test dataset, outperforming other machine learning models. By predicting the patient-specific response to thrombectomy for both tissue and clinical outcomes, our approach offers an innovative biomarker that captures the dynamics of cerebral ischemia. We believe this method holds significant potential to enhance personalised therapeutic strategies and to facilitate efficient resource allocation in acute stroke care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
关关完成签到 ,获得积分10
1秒前
1秒前
RUSeries完成签到,获得积分10
4秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
8秒前
11秒前
eureka发布了新的文献求助10
12秒前
花陵完成签到 ,获得积分10
13秒前
13秒前
科研通AI2S应助VDC采纳,获得10
13秒前
18秒前
不想学习鸭完成签到 ,获得积分20
25秒前
26秒前
自信号厂完成签到 ,获得积分10
28秒前
zzdm完成签到,获得积分10
31秒前
Akim应助dll采纳,获得10
33秒前
33秒前
Nakacoke77完成签到,获得积分10
33秒前
34秒前
江竹兰完成签到,获得积分10
35秒前
eureka发布了新的文献求助30
36秒前
乔治发布了新的文献求助10
37秒前
38秒前
40秒前
小孟吖完成签到 ,获得积分10
44秒前
xiaosi完成签到 ,获得积分10
48秒前
50秒前
dll发布了新的文献求助10
54秒前
55秒前
58秒前
wang5945发布了新的文献求助10
59秒前
所所应助耍酷的小白菜采纳,获得10
1分钟前
1分钟前
乔治完成签到 ,获得积分10
1分钟前
Georgechan完成签到,获得积分10
1分钟前
Macaco完成签到 ,获得积分10
1分钟前
1分钟前
刚子发布了新的文献求助10
1分钟前
NexusExplorer应助wang5945采纳,获得10
1分钟前
Yuan完成签到,获得积分10
1分钟前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 2000
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3381102
求助须知:如何正确求助?哪些是违规求助? 2996152
关于积分的说明 8767544
捐赠科研通 2681333
什么是DOI,文献DOI怎么找? 1468493
科研通“疑难数据库(出版商)”最低求助积分说明 679009
邀请新用户注册赠送积分活动 671103