沸石
化学
吸附
硅酸铝
离子交换
金属
结晶
选择性
化学吸附
水溶液中的金属离子
核化学
无机化学
吸附
离子
催化作用
物理化学
有机化学
作者
Yufei Wang,Shuang Liu,Junyao Pan,Haoyang Zhang,Binyu Wang,Wenfu Yan
标识
DOI:10.1021/acs.inorgchem.4c04717
摘要
MER zeolite, a low-silica zeolite with an 8-membered ring aluminosilicate framework, has been recognized as a promising material in sorption, separation, and ion-exchange applications. Herein, we developed a cost-effective and rapid method to convert parent zeolite H-STI, which was derived from natural stellerite, into MER zeolite through interzeolite conversion with a crystallization time of 8 h. This MER zeolite exhibits high efficiency in removing Pb2+ and Cd2+ from simulated heavy metal wastewater over a pH range of 3–8. It also shows excellent selectivity in the presence of competitive cations, including Na+, K+, Ca2+, Mg2+, Zn2+, Cu2+, and Co2+. At 25 °C, with a MER-S dosage of 1/3000 g·mL–1 for Pb2+ and 1/500 g·mL–1 for Cd2+, the removal efficiencies were 99.7 and 99.9%, respectively. The distribution coefficients were 1097 L·g–1 for Pb2+ and 550 L·g–1 for Cd2+, and the sorption capacities reached 513 mg·g–1 for Pb2+ and 171 mg·g–1 for Cd2+, indicating that the product MER zeolite is one of the highest sorbents for Pb2+ and Cd2+ reported for zeolitic materials. The sorption for Pb2+ and Cd2+ both follows the chemisorption-dominated mechanism, driven by the ion-exchange process between the K+ in the channels MER-S and the Pb2+ or Cd2+ in solution. This work highlights the potential of rapidly synthesized MER zeolite for the effective removal of heavy metal cations, emphasizing its performance and practical applicability.
科研通智能强力驱动
Strongly Powered by AbleSci AI