亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine-Learning-Powered Information Systems: A Systematic Literature Review for Developing Multi-Objective Healthcare Management

标杆管理 医疗保健 医疗保健系统 计算机科学 适应性 人工智能 业务 生态学 营销 经济 生物 经济增长
作者
Maryam Bagheri,Mohsen Bagheritabar,Sohila Alizadeh,Mohammad Salemizadeh Parizi,Parisa Matoufinia,Yang Luo
出处
期刊:Applied sciences [MDPI AG]
卷期号:15 (1): 296-296
标识
DOI:10.3390/app15010296
摘要

The incorporation of machine learning (ML) into healthcare information systems (IS) has transformed multi-objective healthcare management by improving patient monitoring, diagnostic accuracy, and treatment optimization. Notwithstanding its revolutionizing capacity, the area lacks a systematic understanding of how these models are divided and analyzed, leaving gaps in normalization and benchmarking. The present research usually overlooks holistic models for comparing ML-enabled ISs, significantly considering pivotal function criteria like accuracy, precision, sensitivity, and specificity. To address these gaps, we conducted a broad exploration of 306 state-of-the-art papers to present a novel taxonomy of ML-enabled IS for multi-objective healthcare management. We categorized these studies into six key areas, namely diagnostic systems, treatment-planning systems, patient monitoring systems, resource allocation systems, preventive healthcare systems, and hybrid systems. Each category was analyzed depending on significant variables, uncovering that adaptability is the most effective parameter throughout all models. In addition, the majority of papers were published in 2022 and 2023, with MDPI as the leading publisher and Python as the most prevalent programming language. This extensive synthesis not only bridges the present gaps but also proposes actionable insights for improving ML-powered IS in healthcare management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
xuan发布了新的文献求助30
17秒前
21秒前
30秒前
Amadeus发布了新的文献求助10
33秒前
Jiaxing完成签到 ,获得积分10
40秒前
huihui完成签到,获得积分20
42秒前
Demi_Ming完成签到,获得积分10
51秒前
小蘑菇应助xuan采纳,获得10
1分钟前
1分钟前
xuan完成签到,获得积分20
1分钟前
1分钟前
科研废人发布了新的文献求助10
1分钟前
诚心的信封完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
77发布了新的文献求助10
2分钟前
2分钟前
3分钟前
Babyblue发布了新的文献求助10
3分钟前
Hello应助Babyblue采纳,获得10
3分钟前
3分钟前
3分钟前
sisyphus发布了新的文献求助10
3分钟前
上官若男应助TYmtdjbYDD采纳,获得10
3分钟前
Timo干物类完成签到,获得积分10
4分钟前
pin完成签到 ,获得积分10
4分钟前
李爱国应助wpj采纳,获得10
5分钟前
Akim应助科研通管家采纳,获得10
5分钟前
qrwyqjbsd应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
茶茶完成签到,获得积分10
5分钟前
5分钟前
6分钟前
AM发布了新的文献求助10
6分钟前
qrwyqjbsd应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
ling361完成签到,获得积分10
7分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466835
求助须知:如何正确求助?哪些是违规求助? 3059635
关于积分的说明 9067253
捐赠科研通 2750111
什么是DOI,文献DOI怎么找? 1509008
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896