Machine-Learning-Powered Information Systems: A Systematic Literature Review for Developing Multi-Objective Healthcare Management

标杆管理 医疗保健 医疗保健系统 计算机科学 适应性 人工智能 业务 生态学 经济增长 生物 经济 营销
作者
Maryam Bagheri,Mohsen Bagheritabar,Sohila Alizadeh,Mohammad Salemizadeh Parizi,Parisa Matoufinia,Yang Luo
出处
期刊:Applied sciences [MDPI AG]
卷期号:15 (1): 296-296
标识
DOI:10.3390/app15010296
摘要

The incorporation of machine learning (ML) into healthcare information systems (IS) has transformed multi-objective healthcare management by improving patient monitoring, diagnostic accuracy, and treatment optimization. Notwithstanding its revolutionizing capacity, the area lacks a systematic understanding of how these models are divided and analyzed, leaving gaps in normalization and benchmarking. The present research usually overlooks holistic models for comparing ML-enabled ISs, significantly considering pivotal function criteria like accuracy, precision, sensitivity, and specificity. To address these gaps, we conducted a broad exploration of 306 state-of-the-art papers to present a novel taxonomy of ML-enabled IS for multi-objective healthcare management. We categorized these studies into six key areas, namely diagnostic systems, treatment-planning systems, patient monitoring systems, resource allocation systems, preventive healthcare systems, and hybrid systems. Each category was analyzed depending on significant variables, uncovering that adaptability is the most effective parameter throughout all models. In addition, the majority of papers were published in 2022 and 2023, with MDPI as the leading publisher and Python as the most prevalent programming language. This extensive synthesis not only bridges the present gaps but also proposes actionable insights for improving ML-powered IS in healthcare management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助小刺猬采纳,获得30
刚刚
英吉利25发布了新的文献求助30
刚刚
Aria完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
ELEGENCE发布了新的文献求助10
3秒前
文文发布了新的文献求助10
3秒前
如意蓉完成签到,获得积分10
3秒前
123完成签到,获得积分10
4秒前
王磊发布了新的文献求助10
4秒前
alin18发布了新的文献求助10
4秒前
4秒前
gongcheng发布了新的文献求助10
5秒前
6秒前
深情安青应助blusky采纳,获得10
6秒前
mm完成签到,获得积分10
6秒前
qzp完成签到 ,获得积分10
6秒前
wjq完成签到,获得积分10
7秒前
7秒前
NexusExplorer应助faqiudexiaogou2采纳,获得10
7秒前
在水一方应助如意蓉采纳,获得10
8秒前
常艳艳发布了新的文献求助10
8秒前
故意的怀曼完成签到,获得积分10
9秒前
cruise发布了新的文献求助10
10秒前
安静向珊应助zhuzhu采纳,获得10
10秒前
瑾瑜完成签到 ,获得积分10
10秒前
10秒前
钟馗完成签到,获得积分10
10秒前
10秒前
从容面包发布了新的文献求助10
10秒前
打打应助沅期采纳,获得10
11秒前
11秒前
sghe发布了新的文献求助10
11秒前
12秒前
Jerry发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
Jasper应助ELEGENCE采纳,获得10
13秒前
绿灯请通行完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425