已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine-Learning-Powered Information Systems: A Systematic Literature Review for Developing Multi-Objective Healthcare Management

标杆管理 医疗保健 医疗保健系统 计算机科学 适应性 人工智能 业务 生态学 经济增长 生物 经济 营销
作者
Maryam Bagheri,Mohsen Bagheritabar,Sohila Alizadeh,Mohammad Salemizadeh Parizi,Parisa Matoufinia,Yang Luo
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:15 (1): 296-296
标识
DOI:10.3390/app15010296
摘要

The incorporation of machine learning (ML) into healthcare information systems (IS) has transformed multi-objective healthcare management by improving patient monitoring, diagnostic accuracy, and treatment optimization. Notwithstanding its revolutionizing capacity, the area lacks a systematic understanding of how these models are divided and analyzed, leaving gaps in normalization and benchmarking. The present research usually overlooks holistic models for comparing ML-enabled ISs, significantly considering pivotal function criteria like accuracy, precision, sensitivity, and specificity. To address these gaps, we conducted a broad exploration of 306 state-of-the-art papers to present a novel taxonomy of ML-enabled IS for multi-objective healthcare management. We categorized these studies into six key areas, namely diagnostic systems, treatment-planning systems, patient monitoring systems, resource allocation systems, preventive healthcare systems, and hybrid systems. Each category was analyzed depending on significant variables, uncovering that adaptability is the most effective parameter throughout all models. In addition, the majority of papers were published in 2022 and 2023, with MDPI as the leading publisher and Python as the most prevalent programming language. This extensive synthesis not only bridges the present gaps but also proposes actionable insights for improving ML-powered IS in healthcare management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_LaOyQZ发布了新的文献求助10
刚刚
一介尘埃完成签到 ,获得积分10
1秒前
Mak完成签到,获得积分20
10秒前
lianghuihua完成签到 ,获得积分10
11秒前
冷酷哈密瓜完成签到,获得积分10
15秒前
在水一方应助春天采纳,获得10
16秒前
jawa完成签到 ,获得积分10
20秒前
NgiNgu完成签到 ,获得积分10
22秒前
脑洞疼应助心动nofear采纳,获得10
22秒前
犹豫梦旋完成签到,获得积分10
23秒前
23秒前
火翟丰丰山心完成签到,获得积分10
26秒前
26秒前
YEM完成签到,获得积分10
26秒前
盛夏发布了新的文献求助50
30秒前
春天发布了新的文献求助10
30秒前
下颌磨牙钳完成签到,获得积分10
33秒前
Lyncon完成签到,获得积分10
34秒前
35秒前
天天快乐应助科研通管家采纳,获得10
36秒前
加减乘除发布了新的文献求助10
36秒前
李健应助科研通管家采纳,获得10
36秒前
coolkid应助科研通管家采纳,获得10
36秒前
36秒前
悦耳代亦完成签到 ,获得积分0
36秒前
隔壁小黄完成签到 ,获得积分10
37秒前
风趣小蜜蜂完成签到 ,获得积分10
38秒前
科研通AI2S应助PSY采纳,获得10
40秒前
北国完成签到,获得积分20
44秒前
46秒前
量子星尘发布了新的文献求助10
49秒前
戴哈哈发布了新的文献求助10
51秒前
有魅力书雪完成签到,获得积分10
51秒前
叫我魔王大人完成签到,获得积分10
53秒前
情怀应助戴哈哈采纳,获得10
55秒前
tpsdxq发布了新的文献求助10
59秒前
SciGPT应助midokaori采纳,获得10
59秒前
盛夏完成签到,获得积分10
1分钟前
思源应助sxt采纳,获得10
1分钟前
简明发布了新的文献求助10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956896
求助须知:如何正确求助?哪些是违规求助? 3502967
关于积分的说明 11110753
捐赠科研通 3233948
什么是DOI,文献DOI怎么找? 1787671
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802210