亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comprehensive Evaluation of a Deep Learning Model for Automatic Organs-at-Risk Segmentation on Heterogeneous Computed Tomography Images for Abdominal Radiation Therapy

医学 队列 百分位 豪斯多夫距离 核医学 公制(单位) 放射科 人工智能 统计 内科学 数学 运营管理 计算机科学 经济
作者
Wenjun Liao,Xiangde Luo,Yuan He,Ye Dong,Churong Li,Kang Li,Shichuan Zhang,Shaoting Zhang,Guotai Wang,Jianghong Xiao
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:117 (4): 994-1006 被引量:7
标识
DOI:10.1016/j.ijrobp.2023.05.034
摘要

Our purpose was to develop a deep learning model (AbsegNet) that produces accurate contours of 16 organs at risk (OARs) for abdominal malignancies as an essential part of fully automated radiation treatment planning.Three data sets with 544 computed tomography scans were retrospectively collected. Data set 1 was split into 300 training cases and 128 test cases (cohort 1) for AbsegNet. Data set 2, including cohort 2 (n = 24) and cohort 3 (n = 20), were used to validate AbsegNet externally. Data set 3, including cohort 4 (n = 40) and cohort 5 (n = 32), were used to clinically assess the accuracy of AbsegNet-generated contours. Each cohort was from a different center. The Dice similarity coefficient and 95th-percentile Hausdorff distance were calculated to evaluate the delineation quality for each OAR. Clinical accuracy evaluation was classified into 4 levels: no revision, minor revisions (0% < volumetric revision degrees [VRD] ≤ 10%), moderate revisions (10% ≤ VRD < 20%), and major revisions (VRD ≥20%).For all OARs, AbsegNet achieved a mean Dice similarity coefficient of 86.73%, 85.65%, and 88.04% in cohorts 1, 2, and 3, respectively, and a mean 95th-percentile Hausdorff distance of 8.92, 10.18, and 12.40 mm, respectively. The performance of AbsegNet outperformed SwinUNETR, DeepLabV3+, Attention-UNet, UNet, and 3D-UNet. When experts evaluated contours from cohorts 4 and 5, 4 OARs (liver, kidney_L, kidney_R, and spleen) of all patients were scored as having no revision, and over 87.5% of patients with contours of the stomach, esophagus, adrenals, or rectum were considered as having no or minor revisions. Only 15.0% of patients with colon and small bowel contours required major revisions.We propose a novel deep-learning model to delineate OARs on diverse data sets. Most contours produced by AbsegNet are accurate and robust and are, therefore, clinically applicable and helpful to facilitate radiation therapy workflow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
hongxuezhi完成签到,获得积分10
19秒前
lik发布了新的文献求助10
19秒前
充电宝应助科研通管家采纳,获得10
38秒前
Nia完成签到,获得积分20
41秒前
52秒前
Nia发布了新的文献求助10
58秒前
1分钟前
直率靖荷完成签到,获得积分20
1分钟前
直率靖荷发布了新的文献求助10
1分钟前
poegtam发布了新的文献求助30
1分钟前
徐徐图之完成签到 ,获得积分10
1分钟前
起风了完成签到 ,获得积分10
2分钟前
FashionBoy应助tinyfavor采纳,获得30
2分钟前
无产阶级科学者完成签到,获得积分10
2分钟前
2分钟前
3分钟前
tinyfavor发布了新的文献求助30
3分钟前
tinyfavor完成签到,获得积分20
3分钟前
3分钟前
小熊发布了新的文献求助10
3分钟前
小熊完成签到,获得积分10
3分钟前
直率靖荷发布了新的文献求助10
3分钟前
nicolaslcq完成签到,获得积分10
4分钟前
luckyalias完成签到 ,获得积分10
4分钟前
咸鱼卷完成签到 ,获得积分10
4分钟前
自信号厂完成签到 ,获得积分10
4分钟前
ding应助123采纳,获得10
5分钟前
5分钟前
二中所长完成签到,获得积分10
5分钟前
123发布了新的文献求助10
5分钟前
5分钟前
汉堡包应助科研通管家采纳,获得10
6分钟前
TXZ06完成签到,获得积分10
7分钟前
田柾国发布了新的文献求助10
7分钟前
脑洞疼应助hugo采纳,获得30
7分钟前
Hubert完成签到,获得积分10
7分钟前
救救小王叭完成签到 ,获得积分10
7分钟前
Hubert发布了新的文献求助10
8分钟前
小蘑菇应助科研通管家采纳,获得10
8分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162323
求助须知:如何正确求助?哪些是违规求助? 2813330
关于积分的说明 7899683
捐赠科研通 2472818
什么是DOI,文献DOI怎么找? 1316526
科研通“疑难数据库(出版商)”最低求助积分说明 631365
版权声明 602142