材料科学
异质结
动力学
兴奋剂
电化学
化学工程
石墨烯
电化学动力学
阳极
纳米技术
电极
光电子学
物理化学
化学
量子力学
物理
工程类
作者
Haonan Xie,Biao Chen,Chunyang Liu,Guangxuan Wu,Simi Sui,Enzuo Liu,Guangmin Zhou,Chunnian He,Wenbin Hu,Naiqin Zhao
标识
DOI:10.1016/j.ensm.2023.102830
摘要
Interfacial doping engineering has been considered a promising strategy to improve the reaction kinetics of 2D heterostructures in sodium-ion batteries (SIBs). Much attention has been paid to the enhancement mechanism of reaction kinetics of pristine heterostructures during discharge, whereas less attention has been given to the optimization of reaction kinetics of discharged products during charge. Therefore, there is an urgent need for systematic understanding and design guide for interfacial doping engineering of 2D heterostructures to achieve good bidirectional reaction kinetics. In this paper, interfacial doping engineering is designed by the guidance of theoretical calculation, a new interface composed of Co-doped MoS2 (Co-MoS2) and N-doped graphene (NG) has excellent electrical conductivity and Na+ adsorption ability during discharge. Moreover, the revealed Na2S-Mo(Co)/NG interface is greatly beneficial to the dispersion, adsorption, and decomposition of Na2S and the overall electrical conductivity during charge. The good bidirectional reaction kinetics of Co-MoS2/NG interfaces in cobalt-doped MoS2 anchored on three-dimensional nitrogen-doped carbon (Co-MoS2/3DNC) composites have been systematically demonstrated by electrochemical characterization technologies. Therefore, an efficient reversible conversion reaction is enabled by the Co-MoS2/NG interfaces. The Co-MoS2/3DNC shows good rate performance and excellent long-term cycling stability of 1500 cycles at the current density of 1 A g−1. This work provides new insight into designing interfacial doping engineering for highly reversible and durable conversion-type composite anodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI