Engineering the interfacial doping of 2D heterostructures with good bidirectional reaction kinetics for durably reversible sodium-ion batteries

材料科学 异质结 动力学 兴奋剂 电化学 化学工程 石墨烯 电化学动力学 阳极 纳米技术 电极 光电子学 物理化学 化学 量子力学 物理 工程类
作者
Haonan Xie,Biao Chen,Chunyang Liu,Guangxuan Wu,Simi Sui,Enzuo Liu,Guangmin Zhou,Chunnian He,Wenbin Hu,Naiqin Zhao
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:60: 102830-102830 被引量:49
标识
DOI:10.1016/j.ensm.2023.102830
摘要

Interfacial doping engineering has been considered a promising strategy to improve the reaction kinetics of 2D heterostructures in sodium-ion batteries (SIBs). Much attention has been paid to the enhancement mechanism of reaction kinetics of pristine heterostructures during discharge, whereas less attention has been given to the optimization of reaction kinetics of discharged products during charge. Therefore, there is an urgent need for systematic understanding and design guide for interfacial doping engineering of 2D heterostructures to achieve good bidirectional reaction kinetics. In this paper, interfacial doping engineering is designed by the guidance of theoretical calculation, a new interface composed of Co-doped MoS2 (Co-MoS2) and N-doped graphene (NG) has excellent electrical conductivity and Na+ adsorption ability during discharge. Moreover, the revealed Na2S-Mo(Co)/NG interface is greatly beneficial to the dispersion, adsorption, and decomposition of Na2S and the overall electrical conductivity during charge. The good bidirectional reaction kinetics of Co-MoS2/NG interfaces in cobalt-doped MoS2 anchored on three-dimensional nitrogen-doped carbon (Co-MoS2/3DNC) composites have been systematically demonstrated by electrochemical characterization technologies. Therefore, an efficient reversible conversion reaction is enabled by the Co-MoS2/NG interfaces. The Co-MoS2/3DNC shows good rate performance and excellent long-term cycling stability of 1500 cycles at the current density of 1 A g−1. This work provides new insight into designing interfacial doping engineering for highly reversible and durable conversion-type composite anodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guohuameike完成签到,获得积分10
1秒前
2秒前
多愁善感的鱼完成签到 ,获得积分10
4秒前
Orange应助枕风采纳,获得10
4秒前
4秒前
科目三应助11采纳,获得20
4秒前
SciGPT应助croiss采纳,获得10
5秒前
5秒前
平常丝应助范雅寒采纳,获得30
7秒前
Pendulium发布了新的文献求助10
7秒前
dudu发布了新的文献求助10
8秒前
Ava应助xiaomaxia采纳,获得10
8秒前
9秒前
9秒前
orixero应助时尚的靖采纳,获得10
10秒前
10秒前
puppy完成签到,获得积分10
11秒前
梦里花落声应助是阿丹啊采纳,获得10
11秒前
12秒前
loong发布了新的文献求助10
12秒前
13秒前
13秒前
汉堡包应助乐乐乐采纳,获得30
14秒前
panjunlu完成签到,获得积分10
14秒前
forever发布了新的文献求助10
15秒前
科研通AI6应助研友_8Raw2Z采纳,获得10
16秒前
zhonglv7应助研友_8Raw2Z采纳,获得30
16秒前
16秒前
善学以致用应助纳米果采纳,获得10
16秒前
sunny发布了新的文献求助10
16秒前
香蕉觅云应助猪猪hero采纳,获得10
17秒前
minglan发布了新的文献求助10
17秒前
hmv发布了新的文献求助10
18秒前
19秒前
19秒前
所所应助呆萌怡采纳,获得10
20秒前
南北完成签到,获得积分10
20秒前
狂野怜翠完成签到,获得积分10
21秒前
王林完成签到,获得积分10
21秒前
香蕉觅云应助Zox采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259353
求助须知:如何正确求助?哪些是违规求助? 4421049
关于积分的说明 13761672
捐赠科研通 4294788
什么是DOI,文献DOI怎么找? 2356585
邀请新用户注册赠送积分活动 1352976
关于科研通互助平台的介绍 1313938