Engineering the interfacial doping of 2D heterostructures with good bidirectional reaction kinetics for durably reversible sodium-ion batteries

材料科学 异质结 动力学 兴奋剂 电化学 化学工程 石墨烯 电化学动力学 阳极 纳米技术 电极 光电子学 物理化学 化学 量子力学 物理 工程类
作者
Haonan Xie,Biao Chen,Chunyang Liu,Guangxuan Wu,Simi Sui,Enzuo Liu,Guangmin Zhou,Chunnian He,Wenbin Hu,Naiqin Zhao
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:60: 102830-102830 被引量:36
标识
DOI:10.1016/j.ensm.2023.102830
摘要

Interfacial doping engineering has been considered a promising strategy to improve the reaction kinetics of 2D heterostructures in sodium-ion batteries (SIBs). Much attention has been paid to the enhancement mechanism of reaction kinetics of pristine heterostructures during discharge, whereas less attention has been given to the optimization of reaction kinetics of discharged products during charge. Therefore, there is an urgent need for systematic understanding and design guide for interfacial doping engineering of 2D heterostructures to achieve good bidirectional reaction kinetics. In this paper, interfacial doping engineering is designed by the guidance of theoretical calculation, a new interface composed of Co-doped MoS2 (Co-MoS2) and N-doped graphene (NG) has excellent electrical conductivity and Na+ adsorption ability during discharge. Moreover, the revealed Na2S-Mo(Co)/NG interface is greatly beneficial to the dispersion, adsorption, and decomposition of Na2S and the overall electrical conductivity during charge. The good bidirectional reaction kinetics of Co-MoS2/NG interfaces in cobalt-doped MoS2 anchored on three-dimensional nitrogen-doped carbon (Co-MoS2/3DNC) composites have been systematically demonstrated by electrochemical characterization technologies. Therefore, an efficient reversible conversion reaction is enabled by the Co-MoS2/NG interfaces. The Co-MoS2/3DNC shows good rate performance and excellent long-term cycling stability of 1500 cycles at the current density of 1 A g−1. This work provides new insight into designing interfacial doping engineering for highly reversible and durable conversion-type composite anodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芝芝霉霉完成签到,获得积分10
1秒前
sssss发布了新的文献求助10
1秒前
大傻春完成签到 ,获得积分10
2秒前
炙热的桐发布了新的文献求助10
2秒前
laura发布了新的文献求助10
3秒前
4秒前
犹豫嚣发布了新的文献求助10
4秒前
买尔孜亚发布了新的文献求助30
4秒前
多睡会儿发布了新的文献求助10
5秒前
张_5238完成签到,获得积分10
5秒前
5秒前
6秒前
JamesPei应助温暖从菡采纳,获得10
6秒前
6秒前
CodeCraft应助啊饭采纳,获得10
7秒前
InfoNinja应助快乐滑板采纳,获得50
7秒前
失眠的以蓝完成签到,获得积分20
7秒前
lushanxihai完成签到,获得积分10
8秒前
Alina1874完成签到,获得积分10
8秒前
123发布了新的文献求助10
8秒前
8秒前
汉堡包应助wtf采纳,获得10
10秒前
curtisness应助可可可采纳,获得10
10秒前
Freja完成签到,获得积分10
11秒前
David发布了新的文献求助10
11秒前
11秒前
JinwenShi完成签到,获得积分10
11秒前
小小雨泪完成签到,获得积分10
13秒前
汪小珍完成签到,获得积分10
13秒前
Yziii应助呜呼啦呼采纳,获得20
13秒前
13秒前
暴躁汉堡完成签到,获得积分10
15秒前
科研通AI2S应助Seven采纳,获得10
16秒前
16秒前
16秒前
仲凯业完成签到,获得积分10
17秒前
Ge发布了新的文献求助10
19秒前
研究材料的12年枪迷完成签到,获得积分10
20秒前
可可发布了新的文献求助10
21秒前
贰鸟应助stories采纳,获得20
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148410
求助须知:如何正确求助?哪些是违规求助? 2799502
关于积分的说明 7835226
捐赠科研通 2456813
什么是DOI,文献DOI怎么找? 1307424
科研通“疑难数据库(出版商)”最低求助积分说明 628189
版权声明 601655