清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Executive functions as early cognitive markers and predictors of people with high risk to develop Alzheimer’s Clinical Syndrome

口语流利性测试 斯特罗普效应 执行职能 痴呆 流利 认知障碍 认知 接收机工作特性 心理学 听力学 执行功能障碍 内科学 医学 临床心理学 神经心理学 精神科 疾病 数学教育
作者
Sara Fernández Guinea,Almudena Junquera Fernández,Javier Olazarán,Javier González Marqués,Mario A. Parra
出处
期刊:Alzheimers & Dementia [Wiley]
卷期号:19 (S4)
标识
DOI:10.1002/alz.067219
摘要

Abstract Background Recent research has pointed to impaired executive functions (EF) as a potential early predictor of progression from Mild Cognitive Impairment (MCI) to dementia in the Alzheimer’s clinical syndrome (ACS) (Junquera et al, 2020). In this study, we investigated the EF tests that hold the best sensitivity and specificity to discriminate, using baseline data, between cognitively unimpaired older adults and MCI patients who converted to ACS or remained stable after two years (aim 1). We then explored which EF components can best predict conversion from MCI to ACS in a two‐year follow‐up (aim 2). Method We assessed 210 participants, 71 cognitively unimpaired older adults (CU) and 130 MCI patients. Eight tests assessing EF (Similarities, Arithmetic, Reverse Digits, and Letters and Numbers, Trail‐Making Test, Stroop Test, Verbal Fluency – phonemic and categories, and Zoo Map) were administered at baseline and at 2‐year follow‐up, together with cognitive screening tools and IADL measures. ROC analysis was used to address aim 1. A binary regression model was then used to examine the EF components and tests identified via aim 1 that reliably predict progression from MCI to ACS (aim 2). Result Baseline scores from the TMT and semantic categories' fluency were significantly lower in MCI patients who later progressed to ACS (p<.001) than those who remained stable. ROC analysis showed that the TMT and semantic category fluency test were the best tests to differentiate at baseline between MCI converter and non‐converter (AUC = 0.768 and 0.77, respectively), CU and MCI converter (AUC = 0.864 and 0.876, respectively), and between CU and MCI no converter (AUC = 0.602 and 0.673, respectively). Binary logistic regression results revealed that indeed, the TMT and semantic categories fluency test significantly predicted the conversion from MCI to ACS (p<.05). Conclusion Switching abilities and verbal fluency (categories) were the executive function that best predicts MCI to ACS conversion in two years. TMT and semantic verbal fluency clearly identify people with high risk to develop ACS in two years. It is recommended to include these tests in the prodromal Alzheimer’s disease characterization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jus完成签到,获得积分10
7秒前
种下梧桐树完成签到 ,获得积分10
15秒前
22秒前
littleyi发布了新的文献求助10
27秒前
虎牙少年完成签到,获得积分10
34秒前
慕青应助littleyi采纳,获得10
37秒前
氿瑛完成签到,获得积分10
43秒前
科研通AI6应助科研通管家采纳,获得10
54秒前
科研通AI6应助科研通管家采纳,获得10
54秒前
奶奶的龙应助科研通管家采纳,获得10
54秒前
华仔应助科研通管家采纳,获得10
54秒前
1分钟前
xiang完成签到,获得积分20
1分钟前
1分钟前
2分钟前
2分钟前
奶奶的龙应助科研通管家采纳,获得10
2分钟前
奶奶的龙应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
hu完成签到,获得积分10
2分钟前
3分钟前
3分钟前
hu发布了新的文献求助10
3分钟前
3分钟前
3分钟前
大雁完成签到 ,获得积分0
3分钟前
老老熊完成签到,获得积分10
4分钟前
Una完成签到,获得积分10
4分钟前
合作完成签到 ,获得积分10
4分钟前
欣欣完成签到,获得积分10
4分钟前
一天完成签到 ,获得积分10
4分钟前
甜甜的静柏完成签到 ,获得积分10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
奶奶的龙应助科研通管家采纳,获得30
4分钟前
sujingbo完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755732
求助须知:如何正确求助?哪些是违规求助? 5498033
关于积分的说明 15381526
捐赠科研通 4893640
什么是DOI,文献DOI怎么找? 2632305
邀请新用户注册赠送积分活动 1580173
关于科研通互助平台的介绍 1536016