Executive functions as early cognitive markers and predictors of people with high risk to develop Alzheimer’s Clinical Syndrome

口语流利性测试 斯特罗普效应 执行职能 痴呆 流利 认知障碍 认知 接收机工作特性 心理学 听力学 执行功能障碍 内科学 医学 临床心理学 神经心理学 精神科 疾病 数学教育
作者
Sara Fernández Guinea,Almudena Junquera Fernández,Javier Olazarán,Javier González Marqués,Mario A. Parra
出处
期刊:Alzheimers & Dementia [Wiley]
卷期号:19 (S4)
标识
DOI:10.1002/alz.067219
摘要

Abstract Background Recent research has pointed to impaired executive functions (EF) as a potential early predictor of progression from Mild Cognitive Impairment (MCI) to dementia in the Alzheimer’s clinical syndrome (ACS) (Junquera et al, 2020). In this study, we investigated the EF tests that hold the best sensitivity and specificity to discriminate, using baseline data, between cognitively unimpaired older adults and MCI patients who converted to ACS or remained stable after two years (aim 1). We then explored which EF components can best predict conversion from MCI to ACS in a two‐year follow‐up (aim 2). Method We assessed 210 participants, 71 cognitively unimpaired older adults (CU) and 130 MCI patients. Eight tests assessing EF (Similarities, Arithmetic, Reverse Digits, and Letters and Numbers, Trail‐Making Test, Stroop Test, Verbal Fluency – phonemic and categories, and Zoo Map) were administered at baseline and at 2‐year follow‐up, together with cognitive screening tools and IADL measures. ROC analysis was used to address aim 1. A binary regression model was then used to examine the EF components and tests identified via aim 1 that reliably predict progression from MCI to ACS (aim 2). Result Baseline scores from the TMT and semantic categories' fluency were significantly lower in MCI patients who later progressed to ACS (p<.001) than those who remained stable. ROC analysis showed that the TMT and semantic category fluency test were the best tests to differentiate at baseline between MCI converter and non‐converter (AUC = 0.768 and 0.77, respectively), CU and MCI converter (AUC = 0.864 and 0.876, respectively), and between CU and MCI no converter (AUC = 0.602 and 0.673, respectively). Binary logistic regression results revealed that indeed, the TMT and semantic categories fluency test significantly predicted the conversion from MCI to ACS (p<.05). Conclusion Switching abilities and verbal fluency (categories) were the executive function that best predicts MCI to ACS conversion in two years. TMT and semantic verbal fluency clearly identify people with high risk to develop ACS in two years. It is recommended to include these tests in the prodromal Alzheimer’s disease characterization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
where完成签到,获得积分10
14秒前
孟寐以求完成签到 ,获得积分10
15秒前
Titi完成签到 ,获得积分10
21秒前
where发布了新的文献求助10
23秒前
冷冷完成签到 ,获得积分10
24秒前
领导范儿应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
杨yang完成签到 ,获得积分10
25秒前
不想洗碗完成签到 ,获得积分10
42秒前
温馨完成签到 ,获得积分10
50秒前
王海海完成签到 ,获得积分10
53秒前
56秒前
香香丿完成签到 ,获得积分10
57秒前
rgjipeng完成签到,获得积分10
57秒前
sfwrbh发布了新的文献求助10
1分钟前
LUCKY完成签到 ,获得积分10
1分钟前
布蓝图完成签到 ,获得积分10
1分钟前
贪玩的网络完成签到 ,获得积分10
1分钟前
西瓜霜完成签到 ,获得积分10
1分钟前
陈陈完成签到 ,获得积分10
1分钟前
1分钟前
花誓lydia完成签到 ,获得积分10
1分钟前
流星雨完成签到 ,获得积分10
1分钟前
marc107完成签到,获得积分10
1分钟前
xuan完成签到,获得积分10
1分钟前
喜悦向日葵完成签到 ,获得积分10
1分钟前
酷酷小子完成签到 ,获得积分10
1分钟前
Hello应助sunshine采纳,获得10
1分钟前
我就想看看文献完成签到 ,获得积分10
1分钟前
缓慢的灵枫完成签到 ,获得积分10
1分钟前
Nick完成签到,获得积分0
1分钟前
1分钟前
彭于晏应助陶醉的笑槐采纳,获得10
1分钟前
Yuan完成签到,获得积分10
1分钟前
1分钟前
sunshine完成签到,获得积分10
1分钟前
mm完成签到 ,获得积分10
1分钟前
老迟到的羊完成签到 ,获得积分10
1分钟前
sunshine发布了新的文献求助10
1分钟前
wangchong完成签到 ,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965763
求助须知:如何正确求助?哪些是违规求助? 3510977
关于积分的说明 11155912
捐赠科研通 3245469
什么是DOI,文献DOI怎么找? 1793035
邀请新用户注册赠送积分活动 874201
科研通“疑难数据库(出版商)”最低求助积分说明 804251