亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Executive functions as early cognitive markers and predictors of people with high risk to develop Alzheimer’s Clinical Syndrome

口语流利性测试 斯特罗普效应 执行职能 痴呆 流利 认知障碍 认知 接收机工作特性 心理学 听力学 执行功能障碍 内科学 医学 临床心理学 神经心理学 精神科 疾病 数学教育
作者
Sara Fernández Guinea,Almudena Junquera Fernández,Javier Olazarán,Javier González Marqués,Mario A. Parra
出处
期刊:Alzheimers & Dementia [Wiley]
卷期号:19 (S4)
标识
DOI:10.1002/alz.067219
摘要

Abstract Background Recent research has pointed to impaired executive functions (EF) as a potential early predictor of progression from Mild Cognitive Impairment (MCI) to dementia in the Alzheimer’s clinical syndrome (ACS) (Junquera et al, 2020). In this study, we investigated the EF tests that hold the best sensitivity and specificity to discriminate, using baseline data, between cognitively unimpaired older adults and MCI patients who converted to ACS or remained stable after two years (aim 1). We then explored which EF components can best predict conversion from MCI to ACS in a two‐year follow‐up (aim 2). Method We assessed 210 participants, 71 cognitively unimpaired older adults (CU) and 130 MCI patients. Eight tests assessing EF (Similarities, Arithmetic, Reverse Digits, and Letters and Numbers, Trail‐Making Test, Stroop Test, Verbal Fluency – phonemic and categories, and Zoo Map) were administered at baseline and at 2‐year follow‐up, together with cognitive screening tools and IADL measures. ROC analysis was used to address aim 1. A binary regression model was then used to examine the EF components and tests identified via aim 1 that reliably predict progression from MCI to ACS (aim 2). Result Baseline scores from the TMT and semantic categories' fluency were significantly lower in MCI patients who later progressed to ACS (p<.001) than those who remained stable. ROC analysis showed that the TMT and semantic category fluency test were the best tests to differentiate at baseline between MCI converter and non‐converter (AUC = 0.768 and 0.77, respectively), CU and MCI converter (AUC = 0.864 and 0.876, respectively), and between CU and MCI no converter (AUC = 0.602 and 0.673, respectively). Binary logistic regression results revealed that indeed, the TMT and semantic categories fluency test significantly predicted the conversion from MCI to ACS (p<.05). Conclusion Switching abilities and verbal fluency (categories) were the executive function that best predicts MCI to ACS conversion in two years. TMT and semantic verbal fluency clearly identify people with high risk to develop ACS in two years. It is recommended to include these tests in the prodromal Alzheimer’s disease characterization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
假面绅士完成签到,获得积分10
刚刚
独特的高山完成签到,获得积分10
刚刚
3秒前
3秒前
Linden_bd完成签到 ,获得积分10
3秒前
5秒前
chenziyuan发布了新的文献求助10
10秒前
勤恳的念真完成签到,获得积分10
12秒前
ginaaaaa完成签到 ,获得积分10
14秒前
积极的觅松完成签到 ,获得积分10
14秒前
小小威廉完成签到,获得积分10
20秒前
21秒前
Lee完成签到 ,获得积分10
22秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
JamesPei应助科研通管家采纳,获得10
24秒前
27秒前
28秒前
虚拟的清炎完成签到 ,获得积分10
28秒前
31秒前
肾宝发布了新的文献求助10
32秒前
小豆芽完成签到,获得积分10
34秒前
小黑超努力完成签到 ,获得积分10
34秒前
小小威廉发布了新的文献求助10
35秒前
香蕉觅云应助肾宝采纳,获得10
37秒前
Asen完成签到,获得积分10
42秒前
43秒前
44秒前
慕青应助小小威廉采纳,获得10
45秒前
酷炫半青发布了新的文献求助10
47秒前
47秒前
anyilin发布了新的文献求助10
49秒前
50秒前
科研通AI2S应助研友_ngX12Z采纳,获得10
51秒前
科研通AI6应助光轮2000采纳,获得10
52秒前
xiuxiu完成签到 ,获得积分10
56秒前
old杜完成签到,获得积分10
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498101
求助须知:如何正确求助?哪些是违规求助? 4595469
关于积分的说明 14449140
捐赠科研通 4528169
什么是DOI,文献DOI怎么找? 2481381
邀请新用户注册赠送积分活动 1465549
关于科研通互助平台的介绍 1438283