Improved automatic kernel construction for Gaussian process regression in small sample learning for predicting lift body aerodynamic performance

克里金 外推法 高斯过程 支持向量机 Lift(数据挖掘) 多项式回归 回归分析 多项式的 算法 数学 人工智能 统计 计算机科学 高斯分布 机器学习 物理 数学分析 量子力学
作者
Yuxin Yang,Wenwen Zhao,Youtao Xue,Hua Yang,Changju Wu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (6) 被引量:12
标识
DOI:10.1063/5.0153970
摘要

A Gaussian process regression (GPR) model based on an improved automatic kernel construction (AKC) algorithm using beam search is proposed to establish a surrogate model between lift body shape parameters and aerodynamic coefficients with various training sets sizes. The precision of our proposed surrogate model is assessed through tenfold cross-validation. The improved AKC-GPR algorithm, polynomial regression, and support vector regression (SVR) are employed to construct the regression model. The interpolation and extrapolation capabilities of the model, as generated by the improved AKC-GPR algorithm, are examined using six shapes beyond the sample set. The results show that the three models perform similarly with a large training set. However, when the training set size is less than 40% sample dataset, the model constructed by the improved AKC-GPR algorithm has better fitting and prediction capabilities than the other models. Specifically, the max relative error of the improved model is one-fourth of that of SVR and one-half of that of polynomial regression with the training set size of 8% of the sample dataset. Furthermore, the lift-to-drag ratio relative error of interpolation is only 3%, and extrapolation error is 6%. In terms of the fitting and prediction abilities for small samples, the lift-to-drag ratio model outperforms the drag coefficient model, while the lift coefficient model performs the poorest. These findings suggest that the proposed AKC-GPR algorithm can be an effective approach for building a surrogate model in the field of aerodynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助王三采纳,获得10
1秒前
1秒前
2秒前
2秒前
2秒前
xjcy应助独角兽采纳,获得10
3秒前
xjcy应助独角兽采纳,获得10
3秒前
3秒前
小酒窝周周完成签到 ,获得积分10
4秒前
iveuplife完成签到,获得积分20
4秒前
Yange完成签到,获得积分10
5秒前
雪飞完成签到,获得积分10
5秒前
FashionBoy应助levy采纳,获得10
5秒前
文静的刺猬完成签到,获得积分10
6秒前
高挑的宛海完成签到,获得积分20
6秒前
11发布了新的文献求助10
6秒前
huang完成签到,获得积分10
7秒前
Orange应助失重心跳采纳,获得10
7秒前
zmnzmnzmn完成签到,获得积分10
7秒前
bkagyin应助春风嬉蝉采纳,获得10
7秒前
莹莹完成签到,获得积分10
7秒前
王德发3号发布了新的文献求助10
7秒前
7秒前
Timberlake完成签到,获得积分10
8秒前
####发布了新的文献求助10
8秒前
一切都会好起来的完成签到,获得积分10
9秒前
9秒前
9秒前
小蘑菇应助鳄鱼队长采纳,获得30
9秒前
linxi完成签到,获得积分10
9秒前
9秒前
10秒前
FashionBoy应助11采纳,获得10
10秒前
10秒前
11秒前
orixero应助时光友岸采纳,获得10
12秒前
12秒前
研友_5Z4ZA5发布了新的文献求助10
12秒前
北西东发布了新的文献求助10
12秒前
LEO完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585432
求助须知:如何正确求助?哪些是违规求助? 4002122
关于积分的说明 12389406
捐赠科研通 3678232
什么是DOI,文献DOI怎么找? 2027162
邀请新用户注册赠送积分活动 1060707
科研通“疑难数据库(出版商)”最低求助积分说明 947227