Improved automatic kernel construction for Gaussian process regression in small sample learning for predicting lift body aerodynamic performance

克里金 外推法 高斯过程 支持向量机 Lift(数据挖掘) 多项式回归 回归分析 多项式的 算法 数学 人工智能 统计 计算机科学 高斯分布 机器学习 物理 数学分析 量子力学
作者
Yuxin Yang,Wenwen Zhao,Youtao Xue,Hua Yang,Changju Wu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (6) 被引量:12
标识
DOI:10.1063/5.0153970
摘要

A Gaussian process regression (GPR) model based on an improved automatic kernel construction (AKC) algorithm using beam search is proposed to establish a surrogate model between lift body shape parameters and aerodynamic coefficients with various training sets sizes. The precision of our proposed surrogate model is assessed through tenfold cross-validation. The improved AKC-GPR algorithm, polynomial regression, and support vector regression (SVR) are employed to construct the regression model. The interpolation and extrapolation capabilities of the model, as generated by the improved AKC-GPR algorithm, are examined using six shapes beyond the sample set. The results show that the three models perform similarly with a large training set. However, when the training set size is less than 40% sample dataset, the model constructed by the improved AKC-GPR algorithm has better fitting and prediction capabilities than the other models. Specifically, the max relative error of the improved model is one-fourth of that of SVR and one-half of that of polynomial regression with the training set size of 8% of the sample dataset. Furthermore, the lift-to-drag ratio relative error of interpolation is only 3%, and extrapolation error is 6%. In terms of the fitting and prediction abilities for small samples, the lift-to-drag ratio model outperforms the drag coefficient model, while the lift coefficient model performs the poorest. These findings suggest that the proposed AKC-GPR algorithm can be an effective approach for building a surrogate model in the field of aerodynamics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魁梧的灵安完成签到,获得积分10
刚刚
刚刚
FashionBoy应助陶醉的灵枫采纳,获得10
1秒前
活泼的阁发布了新的文献求助10
1秒前
ZJC完成签到,获得积分10
2秒前
Duuuu发布了新的文献求助10
2秒前
白萝卜发布了新的文献求助10
2秒前
CodeCraft应助qq大魔王采纳,获得10
2秒前
NexusExplorer应助瓜瓜采纳,获得10
3秒前
10发布了新的文献求助10
3秒前
林柒发布了新的文献求助10
3秒前
4秒前
桃木林完成签到,获得积分10
4秒前
朱明星应助yuan采纳,获得10
4秒前
大个应助董大米采纳,获得10
5秒前
5秒前
wanci应助tianmafei采纳,获得10
5秒前
好运偏爱的那个男的完成签到,获得积分0
6秒前
Boston完成签到,获得积分10
6秒前
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
maoamo2024发布了新的文献求助10
7秒前
GPTea应助科研通管家采纳,获得20
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
大模型应助AshleyD采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得30
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624314
求助须知:如何正确求助?哪些是违规求助? 4710241
关于积分的说明 14949850
捐赠科研通 4778348
什么是DOI,文献DOI怎么找? 2553236
邀请新用户注册赠送积分活动 1515115
关于科研通互助平台的介绍 1475490