Improved automatic kernel construction for Gaussian process regression in small sample learning for predicting lift body aerodynamic performance

克里金 外推法 高斯过程 支持向量机 Lift(数据挖掘) 多项式回归 回归分析 多项式的 算法 数学 人工智能 统计 计算机科学 高斯分布 机器学习 物理 数学分析 量子力学
作者
Yuxin Yang,Wenwen Zhao,Youtao Xue,Hua Yang,Changju Wu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (6) 被引量:12
标识
DOI:10.1063/5.0153970
摘要

A Gaussian process regression (GPR) model based on an improved automatic kernel construction (AKC) algorithm using beam search is proposed to establish a surrogate model between lift body shape parameters and aerodynamic coefficients with various training sets sizes. The precision of our proposed surrogate model is assessed through tenfold cross-validation. The improved AKC-GPR algorithm, polynomial regression, and support vector regression (SVR) are employed to construct the regression model. The interpolation and extrapolation capabilities of the model, as generated by the improved AKC-GPR algorithm, are examined using six shapes beyond the sample set. The results show that the three models perform similarly with a large training set. However, when the training set size is less than 40% sample dataset, the model constructed by the improved AKC-GPR algorithm has better fitting and prediction capabilities than the other models. Specifically, the max relative error of the improved model is one-fourth of that of SVR and one-half of that of polynomial regression with the training set size of 8% of the sample dataset. Furthermore, the lift-to-drag ratio relative error of interpolation is only 3%, and extrapolation error is 6%. In terms of the fitting and prediction abilities for small samples, the lift-to-drag ratio model outperforms the drag coefficient model, while the lift coefficient model performs the poorest. These findings suggest that the proposed AKC-GPR algorithm can be an effective approach for building a surrogate model in the field of aerodynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彪壮的冷霜完成签到,获得积分10
刚刚
刚刚
1秒前
月亮门儿完成签到 ,获得积分10
2秒前
downdown完成签到,获得积分10
2秒前
123完成签到 ,获得积分10
3秒前
不懈奋进应助chia采纳,获得30
3秒前
Unifate发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
王雯雯发布了新的文献求助10
4秒前
MchemG应助小绵羊采纳,获得10
4秒前
丁仪发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
星星轨迹发布了新的文献求助10
6秒前
8秒前
欢呼鼠标完成签到,获得积分20
8秒前
英俊的铭应助xiaoyang采纳,获得30
10秒前
10秒前
眉间尺完成签到,获得积分10
12秒前
FIN应助GH采纳,获得30
12秒前
12秒前
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
14秒前
谷子完成签到,获得积分10
14秒前
萧水白应助科研通管家采纳,获得10
14秒前
14秒前
柯一一应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
大模型应助科研通管家采纳,获得10
14秒前
柯一一应助科研通管家采纳,获得10
14秒前
共享精神应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
烟花应助科研通管家采纳,获得10
14秒前
小卡应助科研通管家采纳,获得10
14秒前
现代的访曼应助端庄的萝采纳,获得20
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959547
求助须知:如何正确求助?哪些是违规求助? 3505776
关于积分的说明 11126213
捐赠科研通 3237706
什么是DOI,文献DOI怎么找? 1789252
邀请新用户注册赠送积分活动 871647
科研通“疑难数据库(出版商)”最低求助积分说明 802931