Improved automatic kernel construction for Gaussian process regression in small sample learning for predicting lift body aerodynamic performance

克里金 外推法 高斯过程 支持向量机 Lift(数据挖掘) 多项式回归 回归分析 多项式的 算法 数学 人工智能 统计 计算机科学 高斯分布 机器学习 物理 数学分析 量子力学
作者
Yuxin Yang,Wenwen Zhao,Youtao Xue,Hua Yang,Changju Wu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (6) 被引量:12
标识
DOI:10.1063/5.0153970
摘要

A Gaussian process regression (GPR) model based on an improved automatic kernel construction (AKC) algorithm using beam search is proposed to establish a surrogate model between lift body shape parameters and aerodynamic coefficients with various training sets sizes. The precision of our proposed surrogate model is assessed through tenfold cross-validation. The improved AKC-GPR algorithm, polynomial regression, and support vector regression (SVR) are employed to construct the regression model. The interpolation and extrapolation capabilities of the model, as generated by the improved AKC-GPR algorithm, are examined using six shapes beyond the sample set. The results show that the three models perform similarly with a large training set. However, when the training set size is less than 40% sample dataset, the model constructed by the improved AKC-GPR algorithm has better fitting and prediction capabilities than the other models. Specifically, the max relative error of the improved model is one-fourth of that of SVR and one-half of that of polynomial regression with the training set size of 8% of the sample dataset. Furthermore, the lift-to-drag ratio relative error of interpolation is only 3%, and extrapolation error is 6%. In terms of the fitting and prediction abilities for small samples, the lift-to-drag ratio model outperforms the drag coefficient model, while the lift coefficient model performs the poorest. These findings suggest that the proposed AKC-GPR algorithm can be an effective approach for building a surrogate model in the field of aerodynamics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1111应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
1秒前
1111应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
雨中小王应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
nn应助科研通管家采纳,获得10
2秒前
2秒前
nn应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得20
2秒前
2秒前
beichuanheqi发布了新的文献求助10
2秒前
jjyna发布了新的文献求助10
3秒前
Go发布了新的文献求助10
3秒前
4秒前
Yoona发布了新的文献求助10
4秒前
俏皮的邴发布了新的文献求助10
4秒前
5秒前
6秒前
温暖小霸王应助优美橘子采纳,获得10
6秒前
st发布了新的文献求助10
7秒前
无花果应助努力的学采纳,获得10
7秒前
左语发布了新的文献求助10
8秒前
科目三应助June采纳,获得10
8秒前
hujiajun完成签到,获得积分20
8秒前
领导范儿应助yanyan采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594359
求助须知:如何正确求助?哪些是违规求助? 4680082
关于积分的说明 14812808
捐赠科研通 4646997
什么是DOI,文献DOI怎么找? 2534901
邀请新用户注册赠送积分活动 1502862
关于科研通互助平台的介绍 1469514