Improved automatic kernel construction for Gaussian process regression in small sample learning for predicting lift body aerodynamic performance

克里金 外推法 高斯过程 支持向量机 Lift(数据挖掘) 多项式回归 回归分析 多项式的 算法 数学 人工智能 统计 计算机科学 高斯分布 机器学习 物理 数学分析 量子力学
作者
Yuxin Yang,Wenwen Zhao,Youtao Xue,Hua Yang,Changju Wu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (6) 被引量:12
标识
DOI:10.1063/5.0153970
摘要

A Gaussian process regression (GPR) model based on an improved automatic kernel construction (AKC) algorithm using beam search is proposed to establish a surrogate model between lift body shape parameters and aerodynamic coefficients with various training sets sizes. The precision of our proposed surrogate model is assessed through tenfold cross-validation. The improved AKC-GPR algorithm, polynomial regression, and support vector regression (SVR) are employed to construct the regression model. The interpolation and extrapolation capabilities of the model, as generated by the improved AKC-GPR algorithm, are examined using six shapes beyond the sample set. The results show that the three models perform similarly with a large training set. However, when the training set size is less than 40% sample dataset, the model constructed by the improved AKC-GPR algorithm has better fitting and prediction capabilities than the other models. Specifically, the max relative error of the improved model is one-fourth of that of SVR and one-half of that of polynomial regression with the training set size of 8% of the sample dataset. Furthermore, the lift-to-drag ratio relative error of interpolation is only 3%, and extrapolation error is 6%. In terms of the fitting and prediction abilities for small samples, the lift-to-drag ratio model outperforms the drag coefficient model, while the lift coefficient model performs the poorest. These findings suggest that the proposed AKC-GPR algorithm can be an effective approach for building a surrogate model in the field of aerodynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
iNk应助dd采纳,获得20
1秒前
星辰大海应助和谐之玉采纳,获得30
2秒前
通~发布了新的文献求助10
3秒前
4秒前
4秒前
krislang完成签到,获得积分10
5秒前
自由从筠发布了新的文献求助10
5秒前
lr完成签到,获得积分10
8秒前
白昼流星发布了新的文献求助30
9秒前
hhxx发布了新的文献求助10
10秒前
12秒前
aaronzhu1995完成签到,获得积分10
12秒前
13秒前
xuan完成签到,获得积分10
14秒前
小余同学发布了新的文献求助10
16秒前
17秒前
17秒前
xuzhu0907完成签到,获得积分10
18秒前
18秒前
18秒前
不爱科研发布了新的文献求助10
19秒前
小谢完成签到 ,获得积分10
20秒前
唐新惠完成签到 ,获得积分10
21秒前
通~发布了新的文献求助80
21秒前
21秒前
紫薯发布了新的文献求助10
21秒前
23秒前
李彪发布了新的文献求助50
24秒前
嗯哼举报爱学习求助涉嫌违规
26秒前
秀丽雁风发布了新的文献求助10
26秒前
30秒前
喂喂巍完成签到 ,获得积分10
30秒前
Lynn完成签到,获得积分0
30秒前
打打应助通~采纳,获得80
30秒前
zxs完成签到 ,获得积分10
31秒前
31秒前
31秒前
32秒前
派森大神许璋奕先生完成签到,获得积分10
32秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Encyclopedia of Computational Mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3269550
求助须知:如何正确求助?哪些是违规求助? 2909205
关于积分的说明 8348156
捐赠科研通 2579474
什么是DOI,文献DOI怎么找? 1402821
科研通“疑难数据库(出版商)”最低求助积分说明 655523
邀请新用户注册赠送积分活动 634808