Integration of Per- and Polyfluoroalkyl Substance (PFAS) Fingerprints in Fish with Machine Learning for PFAS Source Tracking in Surface Water

支持向量机 计算机科学 人工智能 多类分类 机器学习 集合(抽象数据类型) 环境科学 模式识别(心理学) 渔业 生物 程序设计语言
作者
John Stults,Christopher P. Higgins,Damian E. Helbling
出处
期刊:Environmental Science and Technology Letters [American Chemical Society]
卷期号:10 (11): 1052-1058 被引量:13
标识
DOI:10.1021/acs.estlett.3c00278
摘要

Per- and polyfluoroalkyl substances (PFASs) are a class of environmental contaminants that originate from various sources. The unique chemical fingerprints associated with many commercial products and industrial applications make PFASs ideal candidates for machine learning (ML)-assisted environmental forensics. Here, we propose a novel use of PFAS fingerprints in fish tissue from surface water systems to classify exposure from multiple sources of PFASs using a proof-of-concept demonstration. Three supervised ML classification techniques (k-nearest neighbors (KNN), decision trees, support vector machines) implementing two predictive features are used to classify literature-reported PFAS fingerprints in fish (n = 1057). The importance of additional predictive features was explored using brute force optimization of a multifeature KNN algorithm. The multiclass classification considered exposure to aqueous film-forming foam-impacted water, paper industry wastewater, diffuse sources, or PFASs undergoing long-range transport. The optimized classifiers demonstrated 85%–94% classification accuracy for this first known multiclass classification of PFASs for environmental forensics. The optimized classifiers also demonstrated 79%–92% classification accuracy with a set of independent external validation data (n = 192). Our results demonstrate that PFAS fingerprints in fish tissue may be an effective means of PFAS source tracking in surface water systems. The source code is provided for guidance on best practices for ML-assisted environmental forensics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
3秒前
斯文的斩发布了新的文献求助10
4秒前
4秒前
高高高完成签到 ,获得积分10
4秒前
yar应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
qin希望应助科研通管家采纳,获得10
7秒前
xxxllllll发布了新的文献求助10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
yar应助科研通管家采纳,获得10
7秒前
扫地888完成签到 ,获得积分10
7秒前
DijiaXu应助科研通管家采纳,获得10
7秒前
whatever应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
whatever应助科研通管家采纳,获得10
7秒前
7秒前
李健应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
8秒前
Akim应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
whatever应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得30
8秒前
yar应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
天天快乐应助ZWK采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998421
求助须知:如何正确求助?哪些是违规求助? 3537865
关于积分的说明 11272824
捐赠科研通 3276939
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883818
科研通“疑难数据库(出版商)”最低求助积分说明 810014