亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A regressive encoder-decoder-based deep attention model for segmentation of fetal head in 2D-ultrasound images

胎头 分割 人工智能 计算机科学 计算机视觉 编码器 三维超声 基本事实 超声波 模式识别(心理学) 图像分割 可视化 胎儿 放射科 医学 怀孕 操作系统 生物 遗传学
作者
Somya Srivastava,Prayag Tiwari,Shikha Jain
出处
期刊:Image and Vision Computing [Elsevier]
卷期号:136: 104725-104725
标识
DOI:10.1016/j.imavis.2023.104725
摘要

Ultrasound imaging is the most commonly used imaging during pregnancy for tracking the fetus's growth and monitoring other biological parameters. The assessment of the development of the baby's growth requires imaging-based analysis in every trimester. The automatic computerized software and systems provide the platform for radiologists to more accurately access the fetus's head circumference as compared to manual estimation. The improvement of such computerized algorithms is always the key demand to improve accuracy and precision. This paper proposes an improved encoder-decoder model for the segmentation of the fetal head segmentation in 2D-ultrasound images. The proposed model uses regression in combination with attention to the encoder-decoder model to determine the fetus's head circumference. The model is further extended with the post-processing ellipse fitting to superimpose the segmentation region on ultrasound images for clear visualization of the fetus's head. Further, the proposed model performance is evaluated by using various statistical measures using segmented regions and available ground truth. The experimental results demonstrate a similarity score of 94.56%. The comparative result suggests that the proposed model is providing a more accurate fetus head segmentation region on 2D-ultrasound images as compared to other existing approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助魏欣娜采纳,获得10
4秒前
研友_VZG7GZ应助orangel采纳,获得10
10秒前
12秒前
金沐栋发布了新的文献求助10
15秒前
33秒前
Rachel发布了新的文献求助10
38秒前
54秒前
魏欣娜发布了新的文献求助10
59秒前
orixero应助契合采纳,获得20
1分钟前
1分钟前
Lucas应助潇洒荧荧采纳,获得10
1分钟前
契合发布了新的文献求助20
1分钟前
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
CodeCraft应助魏欣娜采纳,获得10
1分钟前
1分钟前
1分钟前
隐形曼青应助踏实白柏采纳,获得10
1分钟前
研友_VZG7GZ应助契合采纳,获得20
1分钟前
大个应助淡然的念珍采纳,获得10
2分钟前
夹心就是嘉欣呀完成签到,获得积分10
2分钟前
2分钟前
今后应助夹心就是嘉欣呀采纳,获得10
2分钟前
华西招生版完成签到,获得积分10
2分钟前
契合发布了新的文献求助20
2分钟前
慕青应助Huzhu采纳,获得10
2分钟前
2分钟前
风华正茂完成签到,获得积分10
2分钟前
2分钟前
123发布了新的文献求助10
2分钟前
群山完成签到 ,获得积分10
2分钟前
2分钟前
魏欣娜发布了新的文献求助10
2分钟前
科目三应助badabadaba采纳,获得30
3分钟前
阿瓜师傅发布了新的文献求助10
3分钟前
NI完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476330
求助须知:如何正确求助?哪些是违规求助? 4577995
关于积分的说明 14363306
捐赠科研通 4505871
什么是DOI,文献DOI怎么找? 2468931
邀请新用户注册赠送积分活动 1456508
关于科研通互助平台的介绍 1430177