Testing Directed Acyclic Graph via Structural, Supervised and Generative Adversarial Learning

有向无环图 推论 计算机科学 生成语法 机器学习 统计假设检验 有向图 图形模型 图形 人工智能 多重比较问题 算法 理论计算机科学 数学 统计
作者
Chengchun Shi,Yunzhe Zhou,Lexin Li
标识
DOI:10.1080/01621459.2023.2220169
摘要

AbstractAbstractIn this article, we propose a new hypothesis testing method for directed acyclic graph (DAG). While there is a rich class of DAG estimation methods, there is a relative paucity of DAG inference solutions. Moreover, the existing methods often impose some specific model structures such as linear models or additive models, and assume independent data observations. Our proposed test instead allows the associations among the random variables to be nonlinear and the data to be time-dependent. We build the test based on some highly flexible neural networks learners. We establish the asymptotic guarantees of the test, while allowing either the number of subjects or the number of time points for each subject to diverge to infinity. We demonstrate the efficacy of the test through simulations and a brain connectivity network analysis. Supplementary materials for this article are available online.KEYWORDS: Brain connectivity networksDirected acyclic graphGenerative adversarial networksHypothesis testingMultilayer perceptron neural networks AcknowledgmentsThe authors wish to thank the Editor, the AE, and the reviewers for their constructive comments, which have led to a significant improvement of the earlier version of this article.Supplementary MaterialsSection A of the supplementary article discusses several extensions of the proposed test. Section B presents additional theoretical and numerical results. Section C gives the detailed proofs.Disclosure StatementThe authors report there are no competing interests to declare.Additional informationFundingLi’s research was partially supported by NSF grant CIF-2102227, and NIH grants R01AG061303, and R01AG062542. Shi’s research was partially supported by EPSRC grant EP/W014971/1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科目三应助彭栋采纳,获得10
3秒前
方文浩发布了新的文献求助10
3秒前
ding应助YWang采纳,获得10
6秒前
6秒前
林宝雯关注了科研通微信公众号
11秒前
14秒前
斯文败类应助GGBOND采纳,获得10
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
李健的小迷弟应助GGBOND采纳,获得10
14秒前
上官若男应助科研通管家采纳,获得10
14秒前
15秒前
大模型应助科研通管家采纳,获得10
15秒前
圆锥香蕉应助科研通管家采纳,获得20
15秒前
星辰大海应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
Bio应助科研通管家采纳,获得30
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
汉堡包应助科研通管家采纳,获得10
15秒前
16秒前
19秒前
21秒前
21秒前
Dotson发布了新的文献求助10
22秒前
sinsinsin发布了新的文献求助10
23秒前
CodeCraft应助娇气的天亦采纳,获得10
24秒前
25秒前
权思远发布了新的文献求助10
25秒前
彭栋发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
26秒前
李爱国应助收集快乐采纳,获得10
27秒前
守墓人完成签到 ,获得积分10
28秒前
29秒前
科研通AI5应助xiaoxiao采纳,获得10
32秒前
顾矜应助权思远采纳,获得10
32秒前
苯氮小羊完成签到,获得积分10
32秒前
34秒前
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989115
求助须知:如何正确求助?哪些是违规求助? 3531367
关于积分的说明 11253688
捐赠科研通 3269986
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882078
科研通“疑难数据库(出版商)”最低求助积分说明 809105