已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Testing Directed Acyclic Graph via Structural, Supervised and Generative Adversarial Learning

有向无环图 推论 计算机科学 生成语法 机器学习 统计假设检验 有向图 图形模型 图形 人工智能 多重比较问题 算法 理论计算机科学 数学 统计
作者
Chengchun Shi,Yunzhe Zhou,Lexin Li
标识
DOI:10.1080/01621459.2023.2220169
摘要

AbstractAbstractIn this article, we propose a new hypothesis testing method for directed acyclic graph (DAG). While there is a rich class of DAG estimation methods, there is a relative paucity of DAG inference solutions. Moreover, the existing methods often impose some specific model structures such as linear models or additive models, and assume independent data observations. Our proposed test instead allows the associations among the random variables to be nonlinear and the data to be time-dependent. We build the test based on some highly flexible neural networks learners. We establish the asymptotic guarantees of the test, while allowing either the number of subjects or the number of time points for each subject to diverge to infinity. We demonstrate the efficacy of the test through simulations and a brain connectivity network analysis. Supplementary materials for this article are available online.KEYWORDS: Brain connectivity networksDirected acyclic graphGenerative adversarial networksHypothesis testingMultilayer perceptron neural networks AcknowledgmentsThe authors wish to thank the Editor, the AE, and the reviewers for their constructive comments, which have led to a significant improvement of the earlier version of this article.Supplementary MaterialsSection A of the supplementary article discusses several extensions of the proposed test. Section B presents additional theoretical and numerical results. Section C gives the detailed proofs.Disclosure StatementThe authors report there are no competing interests to declare.Additional informationFundingLi’s research was partially supported by NSF grant CIF-2102227, and NIH grants R01AG061303, and R01AG062542. Shi’s research was partially supported by EPSRC grant EP/W014971/1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满意箴发布了新的文献求助10
1秒前
研友_5Zl9D8完成签到,获得积分10
1秒前
3秒前
4秒前
6秒前
wangyue发布了新的文献求助10
7秒前
SciGPT应助可靠的念柏采纳,获得10
9秒前
YZMING完成签到,获得积分10
9秒前
zhangxr发布了新的文献求助10
10秒前
10秒前
11秒前
开朗的之卉完成签到,获得积分20
11秒前
12秒前
ccc完成签到,获得积分10
12秒前
科研通AI2S应助wjq2430采纳,获得30
14秒前
liweiDr发布了新的文献求助10
14秒前
15秒前
忧郁衬衫发布了新的文献求助10
19秒前
21秒前
Freya发布了新的文献求助20
21秒前
22秒前
满意箴完成签到,获得积分10
23秒前
七七发布了新的文献求助10
25秒前
zhangxr完成签到,获得积分10
26秒前
Lucas应助超级的鹅采纳,获得20
27秒前
qcy72完成签到,获得积分10
29秒前
35秒前
argwew完成签到,获得积分10
35秒前
35秒前
星星发布了新的文献求助10
35秒前
37秒前
领导范儿应助科研通管家采纳,获得10
37秒前
Singularity应助科研通管家采纳,获得20
38秒前
英姑应助科研通管家采纳,获得10
38秒前
852应助科研通管家采纳,获得10
38秒前
完美世界应助科研通管家采纳,获得30
38秒前
bkagyin应助科研通管家采纳,获得10
38秒前
38秒前
38秒前
39秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139294
求助须知:如何正确求助?哪些是违规求助? 2790209
关于积分的说明 7794379
捐赠科研通 2446597
什么是DOI,文献DOI怎么找? 1301309
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601109