亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Testing Directed Acyclic Graph via Structural, Supervised and Generative Adversarial Learning

有向无环图 推论 计算机科学 生成语法 机器学习 统计假设检验 有向图 图形模型 图形 人工智能 多重比较问题 算法 理论计算机科学 数学 统计
作者
Chengchun Shi,Yunzhe Zhou,Lexin Li
标识
DOI:10.1080/01621459.2023.2220169
摘要

AbstractAbstractIn this article, we propose a new hypothesis testing method for directed acyclic graph (DAG). While there is a rich class of DAG estimation methods, there is a relative paucity of DAG inference solutions. Moreover, the existing methods often impose some specific model structures such as linear models or additive models, and assume independent data observations. Our proposed test instead allows the associations among the random variables to be nonlinear and the data to be time-dependent. We build the test based on some highly flexible neural networks learners. We establish the asymptotic guarantees of the test, while allowing either the number of subjects or the number of time points for each subject to diverge to infinity. We demonstrate the efficacy of the test through simulations and a brain connectivity network analysis. Supplementary materials for this article are available online.KEYWORDS: Brain connectivity networksDirected acyclic graphGenerative adversarial networksHypothesis testingMultilayer perceptron neural networks AcknowledgmentsThe authors wish to thank the Editor, the AE, and the reviewers for their constructive comments, which have led to a significant improvement of the earlier version of this article.Supplementary MaterialsSection A of the supplementary article discusses several extensions of the proposed test. Section B presents additional theoretical and numerical results. Section C gives the detailed proofs.Disclosure StatementThe authors report there are no competing interests to declare.Additional informationFundingLi’s research was partially supported by NSF grant CIF-2102227, and NIH grants R01AG061303, and R01AG062542. Shi’s research was partially supported by EPSRC grant EP/W014971/1.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
Criminology34应助科研通管家采纳,获得10
11秒前
Criminology34应助科研通管家采纳,获得10
11秒前
shhoing应助科研通管家采纳,获得10
11秒前
Criminology34应助科研通管家采纳,获得10
11秒前
Criminology34应助科研通管家采纳,获得10
11秒前
科研通AI6应助tjxx采纳,获得30
16秒前
隐形曼青应助CMUSK采纳,获得10
22秒前
老实的乐儿完成签到 ,获得积分10
29秒前
38秒前
40秒前
CMUSK发布了新的文献求助10
41秒前
缥缈雯发布了新的文献求助10
45秒前
一剑温柔完成签到 ,获得积分10
52秒前
华仔应助缥缈雯采纳,获得10
58秒前
万能图书馆应助DoctorTa采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
catherine发布了新的文献求助10
1分钟前
DoctorTa发布了新的文献求助10
1分钟前
1分钟前
缥缈雯发布了新的文献求助10
1分钟前
科研通AI6应助缥缈雯采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Hello应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
张嘉雯完成签到 ,获得积分10
2分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
哲别发布了新的文献求助10
2分钟前
草木发布了新的文献求助10
2分钟前
所所应助QQ采纳,获得10
3分钟前
3分钟前
Freshman完成签到,获得积分10
3分钟前
耿昊完成签到,获得积分10
3分钟前
Li发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549206
求助须知:如何正确求助?哪些是违规求助? 4634546
关于积分的说明 14634767
捐赠科研通 4575948
什么是DOI,文献DOI怎么找? 2509399
邀请新用户注册赠送积分活动 1485299
关于科研通互助平台的介绍 1456488