Testing Directed Acyclic Graph via Structural, Supervised and Generative Adversarial Learning

有向无环图 推论 计算机科学 生成语法 机器学习 统计假设检验 有向图 图形模型 图形 人工智能 多重比较问题 算法 理论计算机科学 数学 统计
作者
Chengchun Shi,Yunzhe Zhou,Lexin Li
标识
DOI:10.1080/01621459.2023.2220169
摘要

AbstractAbstractIn this article, we propose a new hypothesis testing method for directed acyclic graph (DAG). While there is a rich class of DAG estimation methods, there is a relative paucity of DAG inference solutions. Moreover, the existing methods often impose some specific model structures such as linear models or additive models, and assume independent data observations. Our proposed test instead allows the associations among the random variables to be nonlinear and the data to be time-dependent. We build the test based on some highly flexible neural networks learners. We establish the asymptotic guarantees of the test, while allowing either the number of subjects or the number of time points for each subject to diverge to infinity. We demonstrate the efficacy of the test through simulations and a brain connectivity network analysis. Supplementary materials for this article are available online.KEYWORDS: Brain connectivity networksDirected acyclic graphGenerative adversarial networksHypothesis testingMultilayer perceptron neural networks AcknowledgmentsThe authors wish to thank the Editor, the AE, and the reviewers for their constructive comments, which have led to a significant improvement of the earlier version of this article.Supplementary MaterialsSection A of the supplementary article discusses several extensions of the proposed test. Section B presents additional theoretical and numerical results. Section C gives the detailed proofs.Disclosure StatementThe authors report there are no competing interests to declare.Additional informationFundingLi’s research was partially supported by NSF grant CIF-2102227, and NIH grants R01AG061303, and R01AG062542. Shi’s research was partially supported by EPSRC grant EP/W014971/1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
壮观的谷冬完成签到 ,获得积分0
1秒前
和谐曼凝完成签到 ,获得积分10
4秒前
如意竺完成签到,获得积分10
4秒前
fzd完成签到,获得积分10
6秒前
9秒前
livra1058完成签到,获得积分10
10秒前
HAO完成签到,获得积分10
12秒前
震动的沉鱼完成签到 ,获得积分10
13秒前
糕糕发布了新的文献求助40
14秒前
dyk完成签到,获得积分10
14秒前
16秒前
carryxu完成签到,获得积分10
16秒前
卡卡罗特应助谦让小蚂蚁采纳,获得10
16秒前
大个应助缓慢醉卉采纳,获得10
17秒前
lzhgoashore完成签到,获得积分10
17秒前
17秒前
helpme完成签到,获得积分10
17秒前
DLY完成签到,获得积分10
18秒前
19秒前
19秒前
达笙完成签到 ,获得积分10
20秒前
研友_VZG7GZ应助炒鸡小将采纳,获得10
22秒前
闪闪山柳完成签到 ,获得积分10
22秒前
在水一方应助科研通管家采纳,获得10
23秒前
小二郎应助科研通管家采纳,获得10
23秒前
852应助科研通管家采纳,获得10
23秒前
小马甲应助科研通管家采纳,获得10
23秒前
zzz发布了新的文献求助10
23秒前
wumiao_1应助科研通管家采纳,获得10
23秒前
wumiao_1应助科研通管家采纳,获得10
23秒前
在水一方应助科研通管家采纳,获得10
23秒前
传奇3应助科研通管家采纳,获得10
23秒前
23秒前
24秒前
24秒前
24秒前
小蘑菇应助科研通管家采纳,获得10
24秒前
在水一方应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038426
求助须知:如何正确求助?哪些是违规求助? 3576119
关于积分的说明 11374556
捐赠科研通 3305834
什么是DOI,文献DOI怎么找? 1819339
邀请新用户注册赠送积分活动 892678
科研通“疑难数据库(出版商)”最低求助积分说明 815029