Data pricing for vertical federated learning: an approach based on data contribution

计算机科学 斯塔克伯格竞赛 数据建模 构造(python库) 信息隐私 保护 数据挖掘 机器学习 数据科学 人工智能 数据库 计算机安全 数学 数理经济学 护理部 程序设计语言 医学
作者
Zhixian Zhang,Xinchao Li,Shiyou Yang
标识
DOI:10.1117/12.2681630
摘要

Federated Learning (FedL) emerged as a privacy-aware alternative, creating an effective means for multiple data providers to enable collaboration on training models without accessing the original data. Vertical federated learning (VFedL), as a crucial classification within FedL, has always been primarily utilized to train a machine learning model with non-uniform data from different providers. Despite the VFedL's benefits in facilitating collaborative training models while safeguarding data privacy, it remains a daunting challenge to incentivize more valuable data providers to participate in the VFedL due to the absence of scientific data pricing and precise measurement of data contributions from participants in practical operations. In this paper, we construct a scientific data pricing method based on the participants' data contribution score to federated models, so that all data providers can be compensated fairly. Firstly, an accurate measurement method of the data contribution score of each federated participant to the global model is constructed based on shapely values for Monte Carlo optimization. Then, taking the data contribution score as the input variable, we formulate a data pricing game model based on Stackelberg with the hosts as the leader and the guest as the follower in VFedL. We further solve our model and analyze the guest's optimal data usage strategy based on data contribution score and the hosts' optimal data pricing strategy. Our method has been proven through numerical experiments to precisely assess the data contribution score of participants with the Federated Logistic Regression model. These study findings can also offer management direction for the FedL service providers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小洋人发布了新的文献求助10
刚刚
1秒前
深情安青应助小孩静悄悄采纳,获得10
2秒前
Mr发布了新的文献求助10
2秒前
wjp发布了新的文献求助10
3秒前
嗷嗷嗷发布了新的文献求助10
3秒前
wanci应助fossette采纳,获得10
4秒前
5秒前
21发布了新的文献求助10
6秒前
6秒前
个性宝马完成签到,获得积分10
6秒前
6秒前
过pass完成签到,获得积分10
7秒前
谦让溪灵完成签到,获得积分10
9秒前
等待小鸽子完成签到 ,获得积分10
9秒前
9秒前
11秒前
12秒前
goodgay133发布了新的文献求助10
12秒前
Li完成签到,获得积分10
12秒前
13秒前
66发布了新的文献求助10
14秒前
14秒前
21发布了新的文献求助10
15秒前
王雯雯发布了新的文献求助10
16秒前
胡杨发布了新的文献求助10
16秒前
17秒前
17秒前
xiaona发布了新的文献求助10
17秒前
Sakura完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助50
18秒前
SmallBamboo发布了新的文献求助10
18秒前
18秒前
凉翊发布了新的文献求助10
19秒前
yang完成签到,获得积分10
19秒前
22秒前
22秒前
braver发布了新的文献求助10
23秒前
24秒前
稳重初翠完成签到,获得积分20
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959564
求助须知:如何正确求助?哪些是违规求助? 3505819
关于积分的说明 11126349
捐赠科研通 3237712
什么是DOI,文献DOI怎么找? 1789318
邀请新用户注册赠送积分活动 871669
科研通“疑难数据库(出版商)”最低求助积分说明 802951