亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Data pricing for vertical federated learning: an approach based on data contribution

计算机科学 斯塔克伯格竞赛 数据建模 构造(python库) 信息隐私 保护 数据挖掘 机器学习 数据科学 人工智能 数据库 计算机安全 医学 护理部 数学 数理经济学 程序设计语言
作者
Zhixian Zhang,Xinchao Li,Shiyou Yang
标识
DOI:10.1117/12.2681630
摘要

Federated Learning (FedL) emerged as a privacy-aware alternative, creating an effective means for multiple data providers to enable collaboration on training models without accessing the original data. Vertical federated learning (VFedL), as a crucial classification within FedL, has always been primarily utilized to train a machine learning model with non-uniform data from different providers. Despite the VFedL's benefits in facilitating collaborative training models while safeguarding data privacy, it remains a daunting challenge to incentivize more valuable data providers to participate in the VFedL due to the absence of scientific data pricing and precise measurement of data contributions from participants in practical operations. In this paper, we construct a scientific data pricing method based on the participants' data contribution score to federated models, so that all data providers can be compensated fairly. Firstly, an accurate measurement method of the data contribution score of each federated participant to the global model is constructed based on shapely values for Monte Carlo optimization. Then, taking the data contribution score as the input variable, we formulate a data pricing game model based on Stackelberg with the hosts as the leader and the guest as the follower in VFedL. We further solve our model and analyze the guest's optimal data usage strategy based on data contribution score and the hosts' optimal data pricing strategy. Our method has been proven through numerical experiments to precisely assess the data contribution score of participants with the Federated Logistic Regression model. These study findings can also offer management direction for the FedL service providers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
jyy发布了新的文献求助10
19秒前
21秒前
21秒前
量子星尘发布了新的文献求助10
30秒前
Shuo应助科研通管家采纳,获得20
33秒前
搜集达人应助科研通管家采纳,获得10
33秒前
52秒前
文艺易蓉发布了新的文献求助10
55秒前
小蘑菇应助文艺易蓉采纳,获得10
1分钟前
调皮醉波完成签到 ,获得积分10
1分钟前
1分钟前
XiaoLiu完成签到,获得积分10
1分钟前
1分钟前
Dreamer.发布了新的文献求助10
2分钟前
充电宝应助Xinying采纳,获得10
2分钟前
2分钟前
Hvginn完成签到,获得积分10
2分钟前
2分钟前
sc发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Shuo应助科研通管家采纳,获得20
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Shuo应助科研通管家采纳,获得20
2分钟前
zwang688完成签到,获得积分10
2分钟前
负责的书兰完成签到 ,获得积分20
2分钟前
Ava应助jyy采纳,获得10
2分钟前
2分钟前
2分钟前
ygl0217发布了新的文献求助10
2分钟前
3分钟前
ygl0217完成签到,获得积分10
3分钟前
null应助星沐易采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
jyy发布了新的文献求助10
4分钟前
Shuo应助科研通管家采纳,获得20
4分钟前
sc发布了新的文献求助10
4分钟前
Lucas应助sc采纳,获得10
4分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4595916
求助须知:如何正确求助?哪些是违规求助? 4008099
关于积分的说明 12408842
捐赠科研通 3686911
什么是DOI,文献DOI怎么找? 2032113
邀请新用户注册赠送积分活动 1065358
科研通“疑难数据库(出版商)”最低求助积分说明 950695