计算机科学
人工智能
特征(语言学)
分割
块(置换群论)
编码器
模式识别(心理学)
特征提取
计算机视觉
数学
几何学
语言学
操作系统
哲学
作者
Jihyoung Ryu,Mobeen Ur Rehman,Imran Fareed Nizami,Kil To Chong
标识
DOI:10.1016/j.compbiomed.2023.107132
摘要
Retinal vessel segmentation is an important task in medical image analysis and has a variety of applications in the diagnosis and treatment of retinal diseases. In this paper, we propose SegR-Net, a deep learning framework for robust retinal vessel segmentation. SegR-Net utilizes a combination of feature extraction and embedding, deep feature magnification, feature precision and interference, and dense multiscale feature fusion to generate accurate segmentation masks. The model consists of an encoder module that extracts high-level features from the input images and a decoder module that reconstructs the segmentation masks by combining features from the encoder module. The encoder module consists of a feature extraction and embedding block that enhances by dense multiscale feature fusion, followed by a deep feature magnification block that magnifies the retinal vessels. To further improve the quality of the extracted features, we use a group of two convolutional layers after each DFM block. In the decoder module, we utilize a feature precision and interference block and a dense multiscale feature fusion block (DMFF) to combine features from the encoder module and reconstruct the segmentation mask. We also incorporate data augmentation and pre-processing techniques to improve the generalization of the trained model. Experimental results on three fundus image publicly available datasets (CHASE_DB1, STARE, and DRIVE) demonstrate that SegR-Net outperforms state-of-the-art models in terms of accuracy, sensitivity, specificity, and F1 score. The proposed framework can provide more accurate and more efficient segmentation of retinal blood vessels in comparison to the state-of-the-art techniques, which is essential for clinical decision-making and diagnosis of various eye diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI