SegR-Net: A deep learning framework with multi-scale feature fusion for robust retinal vessel segmentation

计算机科学 人工智能 特征(语言学) 分割 块(置换群论) 编码器 模式识别(心理学) 特征提取 计算机视觉 数学 几何学 语言学 操作系统 哲学
作者
Jihyoung Ryu,Mobeen Ur Rehman,Imran Fareed Nizami,Kil To Chong
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:163: 107132-107132 被引量:37
标识
DOI:10.1016/j.compbiomed.2023.107132
摘要

Retinal vessel segmentation is an important task in medical image analysis and has a variety of applications in the diagnosis and treatment of retinal diseases. In this paper, we propose SegR-Net, a deep learning framework for robust retinal vessel segmentation. SegR-Net utilizes a combination of feature extraction and embedding, deep feature magnification, feature precision and interference, and dense multiscale feature fusion to generate accurate segmentation masks. The model consists of an encoder module that extracts high-level features from the input images and a decoder module that reconstructs the segmentation masks by combining features from the encoder module. The encoder module consists of a feature extraction and embedding block that enhances by dense multiscale feature fusion, followed by a deep feature magnification block that magnifies the retinal vessels. To further improve the quality of the extracted features, we use a group of two convolutional layers after each DFM block. In the decoder module, we utilize a feature precision and interference block and a dense multiscale feature fusion block (DMFF) to combine features from the encoder module and reconstruct the segmentation mask. We also incorporate data augmentation and pre-processing techniques to improve the generalization of the trained model. Experimental results on three fundus image publicly available datasets (CHASE_DB1, STARE, and DRIVE) demonstrate that SegR-Net outperforms state-of-the-art models in terms of accuracy, sensitivity, specificity, and F1 score. The proposed framework can provide more accurate and more efficient segmentation of retinal blood vessels in comparison to the state-of-the-art techniques, which is essential for clinical decision-making and diagnosis of various eye diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Will完成签到,获得积分10
刚刚
tutu完成签到,获得积分10
1秒前
1秒前
Anthony发布了新的文献求助10
1秒前
含糊的鞋垫完成签到,获得积分10
1秒前
Lucas应助TobyGarfielD采纳,获得10
1秒前
坦率的文龙完成签到,获得积分10
1秒前
贺宁杰完成签到,获得积分10
1秒前
2秒前
2秒前
干净白容发布了新的文献求助10
3秒前
3秒前
Akim应助lzcnextdoor采纳,获得10
3秒前
tutu发布了新的文献求助10
4秒前
torfun发布了新的文献求助10
4秒前
雨林发布了新的文献求助10
5秒前
燕儿应助嗦了蜜采纳,获得10
5秒前
xy发布了新的文献求助30
5秒前
CR完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
sanqian911完成签到,获得积分10
6秒前
何垠禹完成签到,获得积分10
6秒前
长生完成签到 ,获得积分10
6秒前
11111发布了新的文献求助10
6秒前
似水流年完成签到,获得积分10
6秒前
7秒前
落寞易形完成签到,获得积分10
7秒前
liuye0202完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
10秒前
科研通AI5应助torfun采纳,获得10
10秒前
韩程果完成签到 ,获得积分20
10秒前
papi完成签到 ,获得积分10
10秒前
like411发布了新的文献求助10
10秒前
feizhuliu完成签到,获得积分10
11秒前
科研通AI2S应助龍焱采纳,获得10
11秒前
棉花糖吖吖吖完成签到 ,获得积分10
11秒前
玛丽完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615303
求助须知:如何正确求助?哪些是违规求助? 4019099
关于积分的说明 12440991
捐赠科研通 3702052
什么是DOI,文献DOI怎么找? 2041414
邀请新用户注册赠送积分活动 1074129
科研通“疑难数据库(出版商)”最低求助积分说明 957743