SegR-Net: A deep learning framework with multi-scale feature fusion for robust retinal vessel segmentation

计算机科学 人工智能 特征(语言学) 分割 块(置换群论) 编码器 模式识别(心理学) 特征提取 计算机视觉 数学 几何学 语言学 操作系统 哲学
作者
Jihyoung Ryu,Mobeen Ur Rehman,Imran Fareed Nizami,Kil To Chong
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:163: 107132-107132 被引量:37
标识
DOI:10.1016/j.compbiomed.2023.107132
摘要

Retinal vessel segmentation is an important task in medical image analysis and has a variety of applications in the diagnosis and treatment of retinal diseases. In this paper, we propose SegR-Net, a deep learning framework for robust retinal vessel segmentation. SegR-Net utilizes a combination of feature extraction and embedding, deep feature magnification, feature precision and interference, and dense multiscale feature fusion to generate accurate segmentation masks. The model consists of an encoder module that extracts high-level features from the input images and a decoder module that reconstructs the segmentation masks by combining features from the encoder module. The encoder module consists of a feature extraction and embedding block that enhances by dense multiscale feature fusion, followed by a deep feature magnification block that magnifies the retinal vessels. To further improve the quality of the extracted features, we use a group of two convolutional layers after each DFM block. In the decoder module, we utilize a feature precision and interference block and a dense multiscale feature fusion block (DMFF) to combine features from the encoder module and reconstruct the segmentation mask. We also incorporate data augmentation and pre-processing techniques to improve the generalization of the trained model. Experimental results on three fundus image publicly available datasets (CHASE_DB1, STARE, and DRIVE) demonstrate that SegR-Net outperforms state-of-the-art models in terms of accuracy, sensitivity, specificity, and F1 score. The proposed framework can provide more accurate and more efficient segmentation of retinal blood vessels in comparison to the state-of-the-art techniques, which is essential for clinical decision-making and diagnosis of various eye diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丙烯酸树脂完成签到,获得积分10
刚刚
BB完成签到,获得积分10
刚刚
坦率的匪应助静仰星空采纳,获得10
1秒前
1秒前
actor2006完成签到,获得积分10
2秒前
zhaxiao完成签到,获得积分10
2秒前
2秒前
希望天下0贩的0应助淘淘采纳,获得10
2秒前
冰火油条虾完成签到,获得积分10
2秒前
陈逸恒发布了新的文献求助10
2秒前
大红完成签到,获得积分10
2秒前
爆米花应助应天亦采纳,获得10
3秒前
善学以致用应助echooooo采纳,获得10
3秒前
墨卿完成签到,获得积分10
3秒前
uraylong发布了新的文献求助10
4秒前
5秒前
达达利亚完成签到,获得积分10
5秒前
111发布了新的文献求助30
5秒前
ponytail完成签到,获得积分10
6秒前
榕小蜂完成签到 ,获得积分10
6秒前
6秒前
7秒前
wdy111应助Mila采纳,获得20
7秒前
hahhh7发布了新的文献求助10
7秒前
7秒前
科研通AI5应助huyuan采纳,获得10
8秒前
冰西瓜完成签到 ,获得积分0
8秒前
酱啊油完成签到,获得积分10
8秒前
charles发布了新的文献求助10
10秒前
LYL2003完成签到,获得积分10
10秒前
1231完成签到,获得积分10
10秒前
11秒前
大气的天蓝完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
白鸢发布了新的文献求助10
12秒前
有趣的灵魂完成签到,获得积分10
12秒前
12秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653