SegR-Net: A deep learning framework with multi-scale feature fusion for robust retinal vessel segmentation

计算机科学 人工智能 特征(语言学) 分割 块(置换群论) 编码器 模式识别(心理学) 特征提取 计算机视觉 数学 几何学 语言学 操作系统 哲学
作者
Jihyoung Ryu,Mobeen Ur Rehman,Imran Fareed Nizami,Kil To Chong
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:163: 107132-107132 被引量:51
标识
DOI:10.1016/j.compbiomed.2023.107132
摘要

Retinal vessel segmentation is an important task in medical image analysis and has a variety of applications in the diagnosis and treatment of retinal diseases. In this paper, we propose SegR-Net, a deep learning framework for robust retinal vessel segmentation. SegR-Net utilizes a combination of feature extraction and embedding, deep feature magnification, feature precision and interference, and dense multiscale feature fusion to generate accurate segmentation masks. The model consists of an encoder module that extracts high-level features from the input images and a decoder module that reconstructs the segmentation masks by combining features from the encoder module. The encoder module consists of a feature extraction and embedding block that enhances by dense multiscale feature fusion, followed by a deep feature magnification block that magnifies the retinal vessels. To further improve the quality of the extracted features, we use a group of two convolutional layers after each DFM block. In the decoder module, we utilize a feature precision and interference block and a dense multiscale feature fusion block (DMFF) to combine features from the encoder module and reconstruct the segmentation mask. We also incorporate data augmentation and pre-processing techniques to improve the generalization of the trained model. Experimental results on three fundus image publicly available datasets (CHASE_DB1, STARE, and DRIVE) demonstrate that SegR-Net outperforms state-of-the-art models in terms of accuracy, sensitivity, specificity, and F1 score. The proposed framework can provide more accurate and more efficient segmentation of retinal blood vessels in comparison to the state-of-the-art techniques, which is essential for clinical decision-making and diagnosis of various eye diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Richard发布了新的文献求助10
刚刚
星辰大海应助冰苏打采纳,获得10
刚刚
积极诗霜完成签到,获得积分10
刚刚
chx123发布了新的文献求助10
1秒前
我是老大应助qiaoyun采纳,获得10
1秒前
刘文静完成签到,获得积分10
2秒前
尽落发布了新的文献求助10
3秒前
3秒前
4秒前
永远永远完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
合适的乐儿完成签到,获得积分10
6秒前
sswbzh应助风清扬采纳,获得50
7秒前
7秒前
7秒前
正念完成签到,获得积分10
8秒前
Orange应助心灵美的小伙采纳,获得10
8秒前
8秒前
8秒前
8秒前
寒水沉烟完成签到,获得积分10
8秒前
8秒前
充电宝应助九九采纳,获得10
9秒前
9秒前
怕黑寻双完成签到,获得积分10
9秒前
9秒前
9秒前
orixero应助王硕硕采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
llhh2024发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
13秒前
csy完成签到,获得积分10
13秒前
脱锦涛发布了新的文献求助10
13秒前
曹小曹发布了新的文献求助10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894