SegR-Net: A deep learning framework with multi-scale feature fusion for robust retinal vessel segmentation

计算机科学 人工智能 特征(语言学) 分割 块(置换群论) 编码器 模式识别(心理学) 特征提取 计算机视觉 数学 几何学 语言学 操作系统 哲学
作者
Jihyoung Ryu,Mobeen Ur Rehman,Imran Fareed Nizami,Kil To Chong
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:163: 107132-107132 被引量:51
标识
DOI:10.1016/j.compbiomed.2023.107132
摘要

Retinal vessel segmentation is an important task in medical image analysis and has a variety of applications in the diagnosis and treatment of retinal diseases. In this paper, we propose SegR-Net, a deep learning framework for robust retinal vessel segmentation. SegR-Net utilizes a combination of feature extraction and embedding, deep feature magnification, feature precision and interference, and dense multiscale feature fusion to generate accurate segmentation masks. The model consists of an encoder module that extracts high-level features from the input images and a decoder module that reconstructs the segmentation masks by combining features from the encoder module. The encoder module consists of a feature extraction and embedding block that enhances by dense multiscale feature fusion, followed by a deep feature magnification block that magnifies the retinal vessels. To further improve the quality of the extracted features, we use a group of two convolutional layers after each DFM block. In the decoder module, we utilize a feature precision and interference block and a dense multiscale feature fusion block (DMFF) to combine features from the encoder module and reconstruct the segmentation mask. We also incorporate data augmentation and pre-processing techniques to improve the generalization of the trained model. Experimental results on three fundus image publicly available datasets (CHASE_DB1, STARE, and DRIVE) demonstrate that SegR-Net outperforms state-of-the-art models in terms of accuracy, sensitivity, specificity, and F1 score. The proposed framework can provide more accurate and more efficient segmentation of retinal blood vessels in comparison to the state-of-the-art techniques, which is essential for clinical decision-making and diagnosis of various eye diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lin完成签到,获得积分10
1秒前
4秒前
4秒前
充电宝应助yy采纳,获得10
4秒前
周杨完成签到,获得积分10
5秒前
寞涟完成签到,获得积分10
5秒前
可爱半山完成签到 ,获得积分10
6秒前
qpp完成签到,获得积分10
6秒前
HOOW完成签到,获得积分10
8秒前
11秒前
keyan_zhou完成签到,获得积分0
12秒前
胡胡嘉嘉磊磊完成签到,获得积分10
13秒前
Lucas应助wwww采纳,获得10
13秒前
yy发布了新的文献求助10
16秒前
Chou完成签到,获得积分10
17秒前
大聪明应助keyan_zhou采纳,获得10
17秒前
所所应助山下梅子酒采纳,获得10
20秒前
Anoxra完成签到 ,获得积分10
20秒前
桐桐应助liu采纳,获得10
20秒前
yy完成签到,获得积分10
22秒前
xxfsx应助lslslslsllss采纳,获得20
22秒前
浮熙完成签到 ,获得积分10
24秒前
达分歧完成签到,获得积分10
24秒前
wwww完成签到,获得积分10
24秒前
科研通AI6应助坦率的路人采纳,获得10
25秒前
26秒前
科研通AI6应助hunajx采纳,获得30
26秒前
27秒前
xiaoblue完成签到,获得积分10
27秒前
深情安青应助二十八画生采纳,获得10
27秒前
香蕉梨愁完成签到,获得积分10
28秒前
kh完成签到,获得积分10
28秒前
wang完成签到,获得积分10
28秒前
一条蛆完成签到 ,获得积分10
31秒前
天天快乐应助苏星星采纳,获得10
32秒前
guozizi发布了新的文献求助30
33秒前
33秒前
浮游应助mly采纳,获得10
33秒前
35秒前
36秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5380088
求助须知:如何正确求助?哪些是违规求助? 4504158
关于积分的说明 14017420
捐赠科研通 4413027
什么是DOI,文献DOI怎么找? 2424054
邀请新用户注册赠送积分活动 1416950
关于科研通互助平台的介绍 1394628