亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Effective hybrid attention network based on pseudo-color enhancement in ultrasound image segmentation

计算机科学 人工智能 分割 特征(语言学) 卷积神经网络 模式识别(心理学) 频道(广播) 背景(考古学) 图像分割 计算机视觉 古生物学 哲学 语言学 生物 计算机网络
作者
Xuping Huang,Qian Wang,Junxi Chen,Lingna Chen,Zhiyi Chen
出处
期刊:Image and Vision Computing [Elsevier BV]
卷期号:137: 104742-104742 被引量:12
标识
DOI:10.1016/j.imavis.2023.104742
摘要

Ultrasound image segmentation plays a vital role in the early diagnosis of human diseases. It helps diagnose many diseases, such as breast cancer, hemangioma, and other gynecological disorders. However, the intrinsic imaging characteristics of ultrasound images result in substantially lower resolution and clarity than CT, MRI, and other imaging modalities, and they are sensitive to interference from external influences. With its inherent artifacts, blurred lesion boundaries, and uneven intensity distribution, ultrasound images present a challenging task when it comes to segmenting lesion areas accurately. In recent years, convolutional neural networks (CNNs) have achieved remarkable results in medical image segmentation tasks. However, CNNs are limited in capturing the remote dependencies of the input image, leading to degraded accuracy in segmenting ultrasound lesions. In this paper, we developed a deep convolutional neural network that incorporates the pseudo-color enhancement algorithm and hybrid attention modules that enhance the network’s ability to extract fine features and remote modeling capabilities. We propose a novel multi-scale channel attention-based decoder that efficiently uses the feature maps from the encoder as a complement and fuses them with the upsampled feature maps. The hybrid attention combination captures cross-channel interactions efficiently and enhances the context modeling capability, further improving the extraction of coarse and delicate features, and resulting in significant performance improvements. We found that the dice performance improved by 2.54%, 2.47%, 1.39%, 0.99%, and 1.23% on the BUL, BUSI, Hemangioma, BP, and VUI. Results from four public datasets and one self-collected dataset indicate that the proposed method outperforms other medical image segmentation methods for ultrasound image lesion segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
曾经如冬完成签到,获得积分10
2秒前
3秒前
Jessie完成签到 ,获得积分10
5秒前
勇敢牛牛完成签到 ,获得积分10
8秒前
晓晓发布了新的文献求助10
8秒前
一辰不染完成签到,获得积分10
10秒前
10秒前
rengar完成签到,获得积分10
16秒前
小华完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
21秒前
小烦完成签到 ,获得积分10
25秒前
numagok完成签到,获得积分10
28秒前
满怀信心完成签到 ,获得积分10
29秒前
Lucas应助撸撸大仙采纳,获得10
31秒前
晓晓完成签到,获得积分20
36秒前
微笑的桐完成签到 ,获得积分20
40秒前
CYY完成签到 ,获得积分10
45秒前
45秒前
Yuki完成签到 ,获得积分10
49秒前
秋日思语发布了新的文献求助30
50秒前
vagary发布了新的文献求助10
53秒前
56秒前
Orange应助Runjin_Hu采纳,获得10
56秒前
59秒前
vagary完成签到,获得积分10
1分钟前
唐ZY123发布了新的文献求助10
1分钟前
科研通AI5应助JL采纳,获得10
1分钟前
大气的枫发布了新的文献求助10
1分钟前
和谐青文完成签到 ,获得积分10
1分钟前
1分钟前
巫马百招完成签到,获得积分10
1分钟前
SciGPT应助大气的枫采纳,获得10
1分钟前
鸣笛应助大气的枫采纳,获得10
1分钟前
Wang完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610559
求助须知:如何正确求助?哪些是违规求助? 4016467
关于积分的说明 12435266
捐赠科研通 3698082
什么是DOI,文献DOI怎么找? 2039210
邀请新用户注册赠送积分活动 1072079
科研通“疑难数据库(出版商)”最低求助积分说明 955767