Effective hybrid attention network based on pseudo-color enhancement in ultrasound image segmentation

计算机科学 人工智能 分割 特征(语言学) 卷积神经网络 模式识别(心理学) 频道(广播) 背景(考古学) 图像分割 计算机视觉 计算机网络 语言学 生物 哲学 古生物学
作者
Xuping Huang,Qian Wang,Junxi Chen,Lingna Chen,Zhiyi Chen
出处
期刊:Image and Vision Computing [Elsevier]
卷期号:137: 104742-104742 被引量:12
标识
DOI:10.1016/j.imavis.2023.104742
摘要

Ultrasound image segmentation plays a vital role in the early diagnosis of human diseases. It helps diagnose many diseases, such as breast cancer, hemangioma, and other gynecological disorders. However, the intrinsic imaging characteristics of ultrasound images result in substantially lower resolution and clarity than CT, MRI, and other imaging modalities, and they are sensitive to interference from external influences. With its inherent artifacts, blurred lesion boundaries, and uneven intensity distribution, ultrasound images present a challenging task when it comes to segmenting lesion areas accurately. In recent years, convolutional neural networks (CNNs) have achieved remarkable results in medical image segmentation tasks. However, CNNs are limited in capturing the remote dependencies of the input image, leading to degraded accuracy in segmenting ultrasound lesions. In this paper, we developed a deep convolutional neural network that incorporates the pseudo-color enhancement algorithm and hybrid attention modules that enhance the network’s ability to extract fine features and remote modeling capabilities. We propose a novel multi-scale channel attention-based decoder that efficiently uses the feature maps from the encoder as a complement and fuses them with the upsampled feature maps. The hybrid attention combination captures cross-channel interactions efficiently and enhances the context modeling capability, further improving the extraction of coarse and delicate features, and resulting in significant performance improvements. We found that the dice performance improved by 2.54%, 2.47%, 1.39%, 0.99%, and 1.23% on the BUL, BUSI, Hemangioma, BP, and VUI. Results from four public datasets and one self-collected dataset indicate that the proposed method outperforms other medical image segmentation methods for ultrasound image lesion segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助何桉采纳,获得10
刚刚
lbw发布了新的文献求助10
1秒前
Halari完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
爆米花应助紫心采纳,获得10
1秒前
2秒前
SciGPT应助南非的猫采纳,获得10
2秒前
3秒前
花藏影完成签到,获得积分10
3秒前
天真饼干完成签到,获得积分10
3秒前
3秒前
3秒前
12233发布了新的文献求助10
3秒前
4秒前
搜集达人应助何hao采纳,获得10
4秒前
4秒前
sherry关注了科研通微信公众号
5秒前
王司徒发布了新的文献求助10
5秒前
桃子e发布了新的文献求助10
5秒前
虚拟的纸鹤完成签到 ,获得积分10
5秒前
无言发布了新的文献求助10
5秒前
蜉蝣发布了新的文献求助10
6秒前
在荔栀阿完成签到 ,获得积分10
6秒前
6秒前
moonpie完成签到,获得积分10
6秒前
英姑应助旦超采纳,获得10
7秒前
天真饼干发布了新的文献求助10
7秒前
7秒前
SciGPT应助yuyu采纳,获得10
7秒前
KONG发布了新的文献求助10
7秒前
大气摩托发布了新的文献求助10
7秒前
7秒前
清脆语海发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
hhl完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667927
求助须知:如何正确求助?哪些是违规求助? 4888141
关于积分的说明 15122164
捐赠科研通 4826686
什么是DOI,文献DOI怎么找? 2584281
邀请新用户注册赠送积分活动 1538179
关于科研通互助平台的介绍 1496440