已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Effective hybrid attention network based on pseudo-color enhancement in ultrasound image segmentation

计算机科学 人工智能 分割 特征(语言学) 卷积神经网络 模式识别(心理学) 频道(广播) 背景(考古学) 图像分割 计算机视觉 计算机网络 语言学 生物 哲学 古生物学
作者
Xuping Huang,Qian Wang,Junxi Chen,Lingna Chen,Zhiyi Chen
出处
期刊:Image and Vision Computing [Elsevier]
卷期号:137: 104742-104742 被引量:12
标识
DOI:10.1016/j.imavis.2023.104742
摘要

Ultrasound image segmentation plays a vital role in the early diagnosis of human diseases. It helps diagnose many diseases, such as breast cancer, hemangioma, and other gynecological disorders. However, the intrinsic imaging characteristics of ultrasound images result in substantially lower resolution and clarity than CT, MRI, and other imaging modalities, and they are sensitive to interference from external influences. With its inherent artifacts, blurred lesion boundaries, and uneven intensity distribution, ultrasound images present a challenging task when it comes to segmenting lesion areas accurately. In recent years, convolutional neural networks (CNNs) have achieved remarkable results in medical image segmentation tasks. However, CNNs are limited in capturing the remote dependencies of the input image, leading to degraded accuracy in segmenting ultrasound lesions. In this paper, we developed a deep convolutional neural network that incorporates the pseudo-color enhancement algorithm and hybrid attention modules that enhance the network’s ability to extract fine features and remote modeling capabilities. We propose a novel multi-scale channel attention-based decoder that efficiently uses the feature maps from the encoder as a complement and fuses them with the upsampled feature maps. The hybrid attention combination captures cross-channel interactions efficiently and enhances the context modeling capability, further improving the extraction of coarse and delicate features, and resulting in significant performance improvements. We found that the dice performance improved by 2.54%, 2.47%, 1.39%, 0.99%, and 1.23% on the BUL, BUSI, Hemangioma, BP, and VUI. Results from four public datasets and one self-collected dataset indicate that the proposed method outperforms other medical image segmentation methods for ultrasound image lesion segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
加油完成签到,获得积分10
刚刚
WXZ完成签到 ,获得积分10
刚刚
123发布了新的文献求助10
1秒前
2秒前
3秒前
善学以致用应助初夏采纳,获得10
5秒前
科研通AI2S应助lxy采纳,获得10
6秒前
bkagyin应助Oying采纳,获得10
6秒前
思源应助wz采纳,获得10
7秒前
8秒前
8秒前
清风完成签到,获得积分20
12秒前
pjjjjjjj发布了新的文献求助10
12秒前
Eamin发布了新的文献求助10
12秒前
13秒前
曾俊宇完成签到 ,获得积分10
14秒前
孙佳琦完成签到,获得积分10
15秒前
王啸岳完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
18秒前
充电宝应助还没睡采纳,获得10
18秒前
研小白发布了新的文献求助10
20秒前
Oying发布了新的文献求助10
20秒前
21秒前
22秒前
合适忆山完成签到,获得积分20
23秒前
24秒前
zzzdx发布了新的文献求助10
24秒前
26秒前
重要灵寒发布了新的文献求助10
27秒前
28秒前
Eamin完成签到,获得积分10
28秒前
烟花应助lululu采纳,获得10
28秒前
29秒前
32秒前
32秒前
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779070
求助须知:如何正确求助?哪些是违规求助? 5645586
关于积分的说明 15451137
捐赠科研通 4910574
什么是DOI,文献DOI怎么找? 2642735
邀请新用户注册赠送积分活动 1590426
关于科研通互助平台的介绍 1544793