Effective hybrid attention network based on pseudo-color enhancement in ultrasound image segmentation

计算机科学 人工智能 分割 特征(语言学) 卷积神经网络 模式识别(心理学) 频道(广播) 背景(考古学) 图像分割 计算机视觉 计算机网络 语言学 生物 哲学 古生物学
作者
Xuping Huang,Qian Wang,Junxi Chen,Lingna Chen,Zhiyi Chen
出处
期刊:Image and Vision Computing [Elsevier]
卷期号:137: 104742-104742 被引量:12
标识
DOI:10.1016/j.imavis.2023.104742
摘要

Ultrasound image segmentation plays a vital role in the early diagnosis of human diseases. It helps diagnose many diseases, such as breast cancer, hemangioma, and other gynecological disorders. However, the intrinsic imaging characteristics of ultrasound images result in substantially lower resolution and clarity than CT, MRI, and other imaging modalities, and they are sensitive to interference from external influences. With its inherent artifacts, blurred lesion boundaries, and uneven intensity distribution, ultrasound images present a challenging task when it comes to segmenting lesion areas accurately. In recent years, convolutional neural networks (CNNs) have achieved remarkable results in medical image segmentation tasks. However, CNNs are limited in capturing the remote dependencies of the input image, leading to degraded accuracy in segmenting ultrasound lesions. In this paper, we developed a deep convolutional neural network that incorporates the pseudo-color enhancement algorithm and hybrid attention modules that enhance the network’s ability to extract fine features and remote modeling capabilities. We propose a novel multi-scale channel attention-based decoder that efficiently uses the feature maps from the encoder as a complement and fuses them with the upsampled feature maps. The hybrid attention combination captures cross-channel interactions efficiently and enhances the context modeling capability, further improving the extraction of coarse and delicate features, and resulting in significant performance improvements. We found that the dice performance improved by 2.54%, 2.47%, 1.39%, 0.99%, and 1.23% on the BUL, BUSI, Hemangioma, BP, and VUI. Results from four public datasets and one self-collected dataset indicate that the proposed method outperforms other medical image segmentation methods for ultrasound image lesion segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
开朗半仙发布了新的文献求助10
1秒前
领导范儿应助反方向的钟采纳,获得10
2秒前
白蓝完成签到,获得积分10
2秒前
2秒前
Akim应助苗条念云采纳,获得10
3秒前
Ava应助七yy采纳,获得10
3秒前
无私大白发布了新的文献求助10
4秒前
yyy完成签到,获得积分10
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
平常天宇完成签到,获得积分20
4秒前
Steve完成签到 ,获得积分10
5秒前
fufu发布了新的文献求助10
5秒前
xixi发布了新的文献求助30
7秒前
7秒前
yyy完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
12秒前
12秒前
12秒前
wkyt完成签到 ,获得积分10
12秒前
核桃发布了新的文献求助10
12秒前
13秒前
酷波er应助xiaokezhang采纳,获得10
13秒前
科研小能手完成签到,获得积分10
14秒前
14秒前
武武发布了新的文献求助10
14秒前
Owen应助lulufighting采纳,获得10
15秒前
上官若男应助肖鹏采纳,获得10
15秒前
丘比特应助谨慎的凝丝采纳,获得10
15秒前
Party发布了新的文献求助10
16秒前
17秒前
赘婿应助平常天宇采纳,获得30
18秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728831
求助须知:如何正确求助?哪些是违规求助? 5314940
关于积分的说明 15315299
捐赠科研通 4875926
什么是DOI,文献DOI怎么找? 2619096
邀请新用户注册赠送积分活动 1568732
关于科研通互助平台的介绍 1525223