Effective hybrid attention network based on pseudo-color enhancement in ultrasound image segmentation

计算机科学 人工智能 分割 特征(语言学) 卷积神经网络 模式识别(心理学) 频道(广播) 背景(考古学) 图像分割 计算机视觉 计算机网络 语言学 生物 哲学 古生物学
作者
Xuping Huang,Qian Wang,Junxi Chen,Lingna Chen,Zhiyi Chen
出处
期刊:Image and Vision Computing [Elsevier BV]
卷期号:137: 104742-104742 被引量:12
标识
DOI:10.1016/j.imavis.2023.104742
摘要

Ultrasound image segmentation plays a vital role in the early diagnosis of human diseases. It helps diagnose many diseases, such as breast cancer, hemangioma, and other gynecological disorders. However, the intrinsic imaging characteristics of ultrasound images result in substantially lower resolution and clarity than CT, MRI, and other imaging modalities, and they are sensitive to interference from external influences. With its inherent artifacts, blurred lesion boundaries, and uneven intensity distribution, ultrasound images present a challenging task when it comes to segmenting lesion areas accurately. In recent years, convolutional neural networks (CNNs) have achieved remarkable results in medical image segmentation tasks. However, CNNs are limited in capturing the remote dependencies of the input image, leading to degraded accuracy in segmenting ultrasound lesions. In this paper, we developed a deep convolutional neural network that incorporates the pseudo-color enhancement algorithm and hybrid attention modules that enhance the network’s ability to extract fine features and remote modeling capabilities. We propose a novel multi-scale channel attention-based decoder that efficiently uses the feature maps from the encoder as a complement and fuses them with the upsampled feature maps. The hybrid attention combination captures cross-channel interactions efficiently and enhances the context modeling capability, further improving the extraction of coarse and delicate features, and resulting in significant performance improvements. We found that the dice performance improved by 2.54%, 2.47%, 1.39%, 0.99%, and 1.23% on the BUL, BUSI, Hemangioma, BP, and VUI. Results from four public datasets and one self-collected dataset indicate that the proposed method outperforms other medical image segmentation methods for ultrasound image lesion segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyauthor完成签到,获得积分10
刚刚
Quinna发布了新的文献求助10
2秒前
3秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
cathy-w完成签到,获得积分0
8秒前
Sunnyside发布了新的文献求助10
8秒前
wenxiansci完成签到,获得积分0
9秒前
9秒前
11秒前
嗯嗯完成签到,获得积分10
12秒前
Zsir完成签到,获得积分10
12秒前
完美世界应助酷酷的友灵采纳,获得10
13秒前
英姑应助十九岁的时差采纳,获得10
16秒前
17秒前
ableyy完成签到,获得积分10
17秒前
17秒前
hhhblabla应助等待的花生采纳,获得10
18秒前
寒冷的小chao关注了科研通微信公众号
18秒前
20秒前
李李完成签到 ,获得积分10
20秒前
20秒前
lucy_zi发布了新的文献求助10
22秒前
闪闪w完成签到,获得积分10
23秒前
欣喜沛芹发布了新的文献求助10
24秒前
潇湘雪月发布了新的文献求助10
25秒前
25秒前
完美世界应助Bressanone采纳,获得10
26秒前
29秒前
徐哈哈发布了新的文献求助10
31秒前
33秒前
34秒前
35秒前
研友_VZG7GZ应助欣喜沛芹采纳,获得10
36秒前
感动黄豆完成签到,获得积分20
37秒前
38秒前
38秒前
40秒前
42秒前
Owen应助Kikua采纳,获得10
42秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989242
求助须知:如何正确求助?哪些是违规求助? 3531393
关于积分的说明 11253753
捐赠科研通 3270010
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136