Effective hybrid attention network based on pseudo-color enhancement in ultrasound image segmentation

计算机科学 人工智能 分割 特征(语言学) 卷积神经网络 模式识别(心理学) 频道(广播) 背景(考古学) 图像分割 计算机视觉 古生物学 哲学 语言学 生物 计算机网络
作者
Xuping Huang,Qian Wang,Junxi Chen,Lingna Chen,Zhiyi Chen
出处
期刊:Image and Vision Computing [Elsevier BV]
卷期号:137: 104742-104742 被引量:12
标识
DOI:10.1016/j.imavis.2023.104742
摘要

Ultrasound image segmentation plays a vital role in the early diagnosis of human diseases. It helps diagnose many diseases, such as breast cancer, hemangioma, and other gynecological disorders. However, the intrinsic imaging characteristics of ultrasound images result in substantially lower resolution and clarity than CT, MRI, and other imaging modalities, and they are sensitive to interference from external influences. With its inherent artifacts, blurred lesion boundaries, and uneven intensity distribution, ultrasound images present a challenging task when it comes to segmenting lesion areas accurately. In recent years, convolutional neural networks (CNNs) have achieved remarkable results in medical image segmentation tasks. However, CNNs are limited in capturing the remote dependencies of the input image, leading to degraded accuracy in segmenting ultrasound lesions. In this paper, we developed a deep convolutional neural network that incorporates the pseudo-color enhancement algorithm and hybrid attention modules that enhance the network’s ability to extract fine features and remote modeling capabilities. We propose a novel multi-scale channel attention-based decoder that efficiently uses the feature maps from the encoder as a complement and fuses them with the upsampled feature maps. The hybrid attention combination captures cross-channel interactions efficiently and enhances the context modeling capability, further improving the extraction of coarse and delicate features, and resulting in significant performance improvements. We found that the dice performance improved by 2.54%, 2.47%, 1.39%, 0.99%, and 1.23% on the BUL, BUSI, Hemangioma, BP, and VUI. Results from four public datasets and one self-collected dataset indicate that the proposed method outperforms other medical image segmentation methods for ultrasound image lesion segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
目光之澄完成签到,获得积分10
刚刚
wanci应助研友_ndDPBn采纳,获得10
刚刚
耍酷的白梦完成签到,获得积分10
1秒前
miracle完成签到 ,获得积分10
2秒前
coding完成签到,获得积分10
3秒前
4秒前
犹豫水蓝完成签到,获得积分10
5秒前
yin完成签到,获得积分10
5秒前
JUGG完成签到,获得积分10
5秒前
CipherSage应助阿湫采纳,获得10
6秒前
FIN应助手机采纳,获得20
6秒前
星辰大海应助东黎采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
wujingshuai完成签到,获得积分10
7秒前
少年完成签到,获得积分10
7秒前
星辰大海应助ficus_min采纳,获得10
8秒前
小柒柒完成签到,获得积分10
9秒前
sdfwsdfsd完成签到,获得积分10
10秒前
亮仔完成签到,获得积分10
11秒前
土豆丝发布了新的文献求助10
11秒前
ylw完成签到,获得积分20
12秒前
西门明雪完成签到,获得积分10
12秒前
12秒前
烟花应助万松辉采纳,获得10
13秒前
爆米花应助不站在雾里采纳,获得10
13秒前
yy完成签到,获得积分20
14秒前
高贵宛海完成签到,获得积分10
14秒前
854fycchjh完成签到,获得积分10
15秒前
16秒前
研友_ndDPBn发布了新的文献求助10
16秒前
番茄发布了新的文献求助30
16秒前
上官若男应助fw20210085采纳,获得10
17秒前
Aliensick发布了新的文献求助10
17秒前
sss2021完成签到,获得积分10
17秒前
丁一完成签到,获得积分10
17秒前
田様应助光能使者采纳,获得10
18秒前
19秒前
F123完成签到,获得积分10
19秒前
OnionJJ发布了新的文献求助10
19秒前
ccccchen完成签到,获得积分10
20秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048