静电纺丝
膜
材料科学
离子交换
化学工程
纤维
对偶(语法数字)
辐射
高分子化学
离子交换膜
核化学
聚合物
复合材料
化学
离子
有机化学
光学
物理
文学类
工程类
艺术
生物化学
作者
Ahmet Can Kırlıoğlu,Naeimeh Rajabalizadeh Mojarrad,Selmiye Alkan Gürsel,Enver Güler,Begüm Yarar Kaplan
标识
DOI:10.1016/j.ijhydene.2023.05.345
摘要
Anion Exchange Membranes (AEM) have the potential to solve the cost issues of fuel cell technologies due to their basic environment that can allow the use of cheaper components. However, there is still a need to develop an ideal inexpensive, mechanically robust AEM with high ionic conductivity and ion exchange capacity (IEC). In this work, we present various dual-fiber electrospun membranes based on a novel radiation-grafted copolymer. First, the synthesis route of radiation-induced grafting of vinyl benzyl chloride (VBC) onto poly (vinylidene fluoride) (PVDF) to prepare PVDF-g-VBC was optimized. Then, PVDF-g-VBC powders were used to fabricate dual-fiber electrospun mats with inert PVDF and commercial Fumion-FAA-3 ionomer. Dual-fiber electrospun mats were hot-pressed and then quaternized with trimethylamine. Finally, mechanical properties, ion exchange capacity, ionic conductivity, and morphology of these prepared dual-fiber electrospun membranes were investigated. The dual-fiber membrane prepared with PVDF-g-VBC (88% of the total weight of the membrane) and PVDF: Fumion-FAA-3 (1:2) mix (12 wt%) realized ionic conductivity of 4.67 mS/cm at 25 °C, high ion exchange capacity of 1.35 mmol/g with Young's Modulus of 761 MPa. The membrane based on the combination of radiation grafting and dual-fiber electrospinning was prepared for the first time in literature and offers the prospect of tuning and fine-control of mechanical and physicochemical properties of AEMs.
科研通智能强力驱动
Strongly Powered by AbleSci AI