Predicting Neoadjuvant Chemotherapy Response and High-Grade Serous Ovarian Cancer From CT Images in Ovarian Cancer with Multitask Deep Learning: A Multicenter Study

医学 卵巢癌 浆液性液体 接收机工作特性 逻辑回归 前瞻性队列研究 内科学 放射科 肿瘤科 癌症
作者
Rui Yin,Yijun Guo,Yanyan Wang,Qian Zhang,Zhaoxiang Dou,Yigeng Wang,Lisha Qi,Ying Chen,Chao Zhang,Huiyang Li,Xiqi Jian,Wenjuan Ma
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30: S192-S201 被引量:5
标识
DOI:10.1016/j.acra.2023.04.036
摘要

Rationale and Objectives Accurate prediction neoadjuvant chemotherapy (NACT) response in ovarian cancer (OC) is essential for personalized medicine. We aimed to develop and validate a deep learning (DL) model based on pretreatment contrast-enhanced CT (CECT) images for predicting NACT responses and classifying high-grade serous ovarian cancer (HGSOC) to identify patients who may benefit from NACT. Materials and Methods This multicenter study, which contained both retrospective and prospective studies, included consecutive OC patients (n = 757) from three hospitals. Using WHO RECIST 1.1 for the reference standard, a total of 587 women with 1761 images were included in the training and validation sets, 67 women with 201 images were included in the prospective sets, and 103 women with 309 images were included in the external sets. A multitask DL model based on the multiperiod CT image was developed to predict NACT response and HGSOC. Results Logistic regression analysis showed that peritoneal invasion, retinal invasion, and inguinal lymph node metastasis were independent predictors. The DL achieved promising segmentation performances with DICEmean = 0.83 (range: 0.78-0.87). For predicting NACT response, the DL model combined with clinical risk factors obtained area under the receiver operating characteristic curve (AUCs) of 0.87 (0.83-0.89), 0.88 (0.86-0.91), 0.86 (0.82-0.89), and 0.79 (0.75-0.82) in the training, validation, prospective, and external sets, respectively. The AUCs were 0.91 (0.87-0.94), 0.89 (0.86-0.91), 0.80 (0.76-0.84), and 0.80 (0.75-0.85) in four sets in HGSOC classification. Conclusion The multitask DL model developed using multiperiod CT images exhibited a promising performance for predicting NACT response and HGSOC with OC, which could provide valuable information for individualized treatment. Accurate prediction neoadjuvant chemotherapy (NACT) response in ovarian cancer (OC) is essential for personalized medicine. We aimed to develop and validate a deep learning (DL) model based on pretreatment contrast-enhanced CT (CECT) images for predicting NACT responses and classifying high-grade serous ovarian cancer (HGSOC) to identify patients who may benefit from NACT. This multicenter study, which contained both retrospective and prospective studies, included consecutive OC patients (n = 757) from three hospitals. Using WHO RECIST 1.1 for the reference standard, a total of 587 women with 1761 images were included in the training and validation sets, 67 women with 201 images were included in the prospective sets, and 103 women with 309 images were included in the external sets. A multitask DL model based on the multiperiod CT image was developed to predict NACT response and HGSOC. Logistic regression analysis showed that peritoneal invasion, retinal invasion, and inguinal lymph node metastasis were independent predictors. The DL achieved promising segmentation performances with DICEmean = 0.83 (range: 0.78-0.87). For predicting NACT response, the DL model combined with clinical risk factors obtained area under the receiver operating characteristic curve (AUCs) of 0.87 (0.83-0.89), 0.88 (0.86-0.91), 0.86 (0.82-0.89), and 0.79 (0.75-0.82) in the training, validation, prospective, and external sets, respectively. The AUCs were 0.91 (0.87-0.94), 0.89 (0.86-0.91), 0.80 (0.76-0.84), and 0.80 (0.75-0.85) in four sets in HGSOC classification. The multitask DL model developed using multiperiod CT images exhibited a promising performance for predicting NACT response and HGSOC with OC, which could provide valuable information for individualized treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
早睡早起的年轻人完成签到,获得积分10
刚刚
一叶知生关注了科研通微信公众号
1秒前
科研通AI6应助tong采纳,获得10
1秒前
严逆完成签到,获得积分10
1秒前
七叶完成签到 ,获得积分10
1秒前
石龙子完成签到,获得积分10
2秒前
2秒前
3秒前
zxq发布了新的文献求助10
3秒前
3秒前
火星上的飞丹完成签到 ,获得积分10
3秒前
源轩完成签到 ,获得积分10
4秒前
似我完成签到,获得积分10
4秒前
无聊的夜山完成签到,获得积分10
5秒前
niekyang发布了新的文献求助10
5秒前
5秒前
wly完成签到,获得积分10
5秒前
SDNUDRUG发布了新的文献求助10
5秒前
匆匆而过发布了新的文献求助10
5秒前
小葵发布了新的文献求助10
6秒前
单纯面包发布了新的文献求助10
6秒前
wenhao完成签到 ,获得积分10
6秒前
Zinia完成签到,获得积分10
6秒前
cong完成签到,获得积分10
7秒前
MIPAMING发布了新的文献求助30
7秒前
爆米花应助会化蝶采纳,获得10
7秒前
Lolo发布了新的文献求助10
7秒前
lulu8382发布了新的文献求助10
8秒前
三笠完成签到,获得积分10
8秒前
子铭发布了新的文献求助10
8秒前
千玺发布了新的文献求助10
8秒前
9秒前
允许一切发生完成签到,获得积分10
9秒前
9秒前
野草完成签到,获得积分10
10秒前
10秒前
张洁发布了新的文献求助10
10秒前
香蕉觅云应助欧哈纳采纳,获得10
11秒前
斯文败类应助cheng zou采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Architectural Corrosion and Critical Infrastructure 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4890960
求助须知:如何正确求助?哪些是违规求助? 4174608
关于积分的说明 12956124
捐赠科研通 3936644
什么是DOI,文献DOI怎么找? 2159757
邀请新用户注册赠送积分活动 1178149
关于科研通互助平台的介绍 1083632