Machine Learning-Based Development of Nomogram for Hepatocellular Carcinoma to Predict Acute Liver Function Deterioration After Drug-Eluting Beads Transarterial Chemoembolization

列线图 医学 肝细胞癌 逻辑回归 接收机工作特性 肝功能 肿瘤科 放射科 内科学
作者
Jie Li,Yuyuan Zhang,Heqing Ye,Luqi Hu,Xin Li,Huien Wang,Yu Peng,Bailu Wu,Peijie Lyu,Zhen Li
出处
期刊:Academic Radiology [Elsevier]
卷期号:30: S40-S52 被引量:2
标识
DOI:10.1016/j.acra.2023.05.014
摘要

Acute liver function deterioration (ALFD) following drug-eluting beads transarterial chemotherapy embolism (DEB-TACE) was considered a risk factor for prognosis in patients with hepatocellular carcinoma (HCC). In this study, we aimed to develop and validate a nomogram for the prediction of ALFD after DEB-TACE.A total of 288 patients with HCC from a single center were randomly divided into a training dataset (n = 201) and a validation dataset (n = 87). The univariate and multivariate logistic regression analyses were performed to determine risk factors for ALFD. The least absolute shrinkage and selection operator (LASSO) was applied to identify the key risk factors and fit a model. The performance, calibration, and clinical utility of the predictive nomogram were assessed using receiver operating characteristic curves, calibration curves, and decision curve analysis (DCA).LASSO regression analysis determined six risk factors with fibrosis index based on four factors (FIB-4) as the independent factor for the occurrence of ALFD after DEB-TACE. Gamma-glutamyltransferase, FIB-4, tumor extent, and portal vein invasion were integrated into the nomogram. In both the training and validation cohorts, the nomogram demonstrated promising discrimination with AUC of 0.762 and 0.878, respectively. The calibration curves and DCA revealed good calibration and clinical utility of the predictive nomogram.The nomogram-based risk of ALFD stratification may improve clinical decision-making and surveillance protocols for patients with a high risk of ALFD after DEB-TACE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
双人鱼life完成签到 ,获得积分10
1秒前
meng完成签到,获得积分10
2秒前
2秒前
wqc2060发布了新的文献求助10
2秒前
小羊kisskiss完成签到,获得积分10
2秒前
充电宝应助asd采纳,获得10
5秒前
AKERMAN发布了新的文献求助10
6秒前
北过居庸完成签到,获得积分10
7秒前
cqc发布了新的文献求助10
8秒前
pcr163应助scl采纳,获得200
10秒前
11秒前
请叫我鬼才完成签到,获得积分10
12秒前
脑洞疼应助哎呀小艾哈采纳,获得10
13秒前
木有完成签到 ,获得积分10
14秒前
14秒前
15秒前
玲玲发布了新的文献求助10
16秒前
cqc完成签到,获得积分20
17秒前
落寞臻发布了新的文献求助10
18秒前
18秒前
Re发布了新的文献求助10
21秒前
21秒前
abc123完成签到,获得积分10
21秒前
XMUZH发布了新的文献求助10
22秒前
24秒前
27秒前
Chunlan完成签到,获得积分10
28秒前
Qsss发布了新的文献求助10
30秒前
饱满烙完成签到 ,获得积分10
32秒前
快快跑咯完成签到,获得积分10
32秒前
尛瞐慶成发布了新的文献求助10
32秒前
不配.应助Re采纳,获得10
33秒前
水若琳完成签到,获得积分10
34秒前
34秒前
35秒前
丘比特应助笨蛋采纳,获得10
37秒前
41秒前
诺诺完成签到,获得积分10
41秒前
11发布了新的文献求助10
42秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135027
求助须知:如何正确求助?哪些是违规求助? 2785983
关于积分的说明 7774640
捐赠科研通 2441787
什么是DOI,文献DOI怎么找? 1298184
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825