An MRI Deep Learning Model Predicts Outcome in Rectal Cancer

医学 结直肠癌 结果(博弈论) 癌症 磁共振成像 放射科 内科学 肿瘤科 数理经济学 数学
作者
Xiaofeng Jiang,Hengyu Zhao,Oliver Lester Saldanha,Sven Nebelung,Christiane Kühl,Iakovos Amygdalos,Sven Arke Lang,Xiaojian Wu,Xiaochun Meng,Daniel Truhn,Jakob Nikolas Kather,Jia Ke
出处
期刊:Radiology [Radiological Society of North America]
卷期号:307 (5) 被引量:60
标识
DOI:10.1148/radiol.222223
摘要

Background Deep learning (DL) models can potentially improve prognostication of rectal cancer but have not been systematically assessed. Purpose To develop and validate an MRI DL model for predicting survival in patients with rectal cancer based on segmented tumor volumes from pretreatment T2-weighted MRI scans. Materials and Methods DL models were trained and validated on retrospectively collected MRI scans of patients with rectal cancer diagnosed between August 2003 and April 2021 at two centers. Patients were excluded from the study if there were concurrent malignant neoplasms, prior anticancer treatment, incomplete course of neoadjuvant therapy, or no radical surgery performed. The Harrell C-index was used to determine the best model, which was applied to internal and external test sets. Patients were stratified into high- and low-risk groups based on a fixed cutoff calculated in the training set. A multimodal model was also assessed, which used DL model-computed risk score and pretreatment carcinoembryonic antigen level as input. Results The training set included 507 patients (median age, 56 years [IQR, 46-64 years]; 355 men). In the validation set (n = 218; median age, 55 years [IQR, 47-63 years]; 144 men), the best algorithm reached a C-index of 0.82 for overall survival. The best model reached hazard ratios of 3.0 (95% CI: 1.0, 9.0) in the high-risk group in the internal test set (n = 112; median age, 60 years [IQR, 52-70 years]; 76 men) and 2.3 (95% CI: 1.0, 5.4) in the external test set (n = 58; median age, 57 years [IQR, 50-67 years]; 38 men). The multimodal model further improved the performance, with a C-index of 0.86 and 0.67 for the validation and external test set, respectively. Conclusion A DL model based on preoperative MRI was able to predict survival of patients with rectal cancer. The model could be used as a preoperative risk stratification tool. Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Langs in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
科目三应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
iFaceDOG完成签到,获得积分10
刚刚
1秒前
he发布了新的文献求助10
1秒前
2秒前
acorn发布了新的文献求助10
2秒前
健康的雁凡完成签到,获得积分10
2秒前
所所应助淡淡夕阳采纳,获得10
2秒前
2秒前
黄腾应助苏木采纳,获得10
3秒前
3秒前
3秒前
阿鹏发布了新的文献求助10
4秒前
dnnnsns发布了新的文献求助30
4秒前
5秒前
YamDaamCaa应助痴情的博超采纳,获得30
6秒前
一口蛋黄苏完成签到,获得积分20
6秒前
念姬发布了新的文献求助10
6秒前
加鱼发布了新的文献求助10
7秒前
dingm2完成签到 ,获得积分10
7秒前
科研通AI5应助Emma采纳,获得10
7秒前
香蕉觅云应助珺儿采纳,获得10
8秒前
TR发布了新的文献求助10
8秒前
tao驳回了wanci应助
9秒前
swsssn发布了新的文献求助10
9秒前
阿鹏完成签到,获得积分10
9秒前
李爱国应助ALIEN采纳,获得10
10秒前
不知道完成签到,获得积分10
10秒前
Dasiliy完成签到,获得积分10
12秒前
12秒前
smottom应助dingjianqiang采纳,获得10
12秒前
研友_VZG7GZ应助Wu采纳,获得10
13秒前
姜丽敏完成签到,获得积分20
14秒前
Owen应助小刀刀采纳,获得10
14秒前
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966448
求助须知:如何正确求助?哪些是违规求助? 3511917
关于积分的说明 11160753
捐赠科研通 3246652
什么是DOI,文献DOI怎么找? 1793478
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403