体内
间充质干细胞
药理学
细胞凋亡
化学
股骨头
药物输送
癌症研究
医学
生物
外科
病理
生物化学
生物技术
有机化学
作者
Yuxuan Zhao,Songhang Li,Maogeng Feng,Mei Zhang,Zhiqiang Liu,Yangxue Yao,Tianxu Zhang,Yueying Jiang,Yunfeng Lin,Xiaoxiao Cai
出处
期刊:Small
[Wiley]
日期:2023-06-14
卷期号:19 (41)
被引量:31
标识
DOI:10.1002/smll.202302326
摘要
Osteonecrosis of the femoral head (ONFH) is recognized as a common refractory orthopedic disease that causes severe pain and poor quality of life in patients. Puerarin (Pue), a natural isoflavone glycoside, can promote osteogenesis and inhibit apoptosis of bone mesenchymal stem cells (BMSCs), demonstrating its great potential in the treatment of osteonecrosis. However, its low aqueous solubility, fast degradation in vivo, and inadequate bioavailability, limit its clinical application and therapeutic efficacy. Tetrahedral framework nucleic acids (tFNAs) are promising novel DNA nanomaterials in drug delivery. In this study, tFNAs as Pue carriers is used and synthesized a tFNA/Pue complex (TPC) that exhibited better stability, biocompatibility, and tissue utilization than free Pue. A dexamethasone (DEX)-treated BMSC model in vitro and a methylprednisolone (MPS)-induced ONFH model in vivo is also established, to explore the regulatory effects of TPC on osteogenesis and apoptosis of BMSCs. This findings showed that TPC can restore osteogenesis dysfunction and attenuated BMSC apoptosis induced by high-dose glucocorticoids (GCs) through the hedgehog and Akt/Bcl-2 pathways, contributing to the prevention of GC-induced ONFH in rats. Thus, TPC is a promising drug for the treatment of ONFH and other osteogenesis-related diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI