MXenes公司
材料科学
插层(化学)
空位缺陷
电化学
密度泛函理论
兴奋剂
费米能级
电极
掺杂剂
化学物理
离子
电子转移
纳米技术
电子
光电子学
无机化学
物理化学
结晶学
计算化学
化学
物理
量子力学
有机化学
作者
Zhaoxi Liu,Yapeng Tian,Shiquan Li,Liu Wang,Buxing Han,Xinwei Cui,Qun Xu
标识
DOI:10.1002/adfm.202301994
摘要
Abstract The design of pseudocapacitive electrodes that exhibit high‐rate and high volumetric capacitances is a big challenge, since it requires subtle modulation of ion‐intercalation structures that are able to achieve high electrochemical activity, fast ion transport, and facilitated electron transfer, simultaneously. Herein, controllable and selective etching of B atoms from B‐doped Ti 3 AlC 2 precursors is reported, which generates boron‐vacancy doped MXene (B‐V‐MXene) nanosheets with finely‐regulated, ion‐intercalation structures. Electrochemical studies and density‐functional‐theory calculations demonstrate that Ti around vacancies possess higher surface‐redox activity with protons than those on pristine MXenes for the improvement of capacitances. In addition, interlayer spacing can be optimized on B‐V‐MXenes in promoting proton intercalation. More importantly, the dopant B atoms can increase the electron density on Ti, facilitating the adsorption of the intercalated protons; and further, B 2p‐Ti 3d hybridized band sits closer to the Fermi energy than that of C 2p bands, which bridges the energy gap for electron transfer in the pseudo‐capacitive reaction. With synergy of all these effects, the novel B‐V‐MXene compact electrodes can deliver the previously unmatched high volumetric capacitances of 807 F cm −3 at 1,000 mV s −1 and 1,815 F cm −3 at 5 mV s −1 , with excellent cycle stability over 10,000 cycles.
科研通智能强力驱动
Strongly Powered by AbleSci AI