Revealing High‐Rate and High Volumetric Pseudo‐Intercalation Charge Storage from Boron‐Vacancy Doped MXenes

MXenes公司 材料科学 插层(化学) 空位缺陷 电化学 密度泛函理论 兴奋剂 费米能级 电极 掺杂剂 化学物理 离子 电子转移 带隙 纳米技术 电子 光电子学 无机化学 物理化学 结晶学 计算化学 化学 物理 量子力学 有机化学
作者
Zhaoxi Liu,Yapeng Tian,Shiquan Li,Liu Wang,Buxing Han,Xinwei Cui,Qun Xu
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:33 (40) 被引量:46
标识
DOI:10.1002/adfm.202301994
摘要

Abstract The design of pseudocapacitive electrodes that exhibit high‐rate and high volumetric capacitances is a big challenge, since it requires subtle modulation of ion‐intercalation structures that are able to achieve high electrochemical activity, fast ion transport, and facilitated electron transfer, simultaneously. Herein, controllable and selective etching of B atoms from B‐doped Ti 3 AlC 2 precursors is reported, which generates boron‐vacancy doped MXene (B‐V‐MXene) nanosheets with finely‐regulated, ion‐intercalation structures. Electrochemical studies and density‐functional‐theory calculations demonstrate that Ti around vacancies possess higher surface‐redox activity with protons than those on pristine MXenes for the improvement of capacitances. In addition, interlayer spacing can be optimized on B‐V‐MXenes in promoting proton intercalation. More importantly, the dopant B atoms can increase the electron density on Ti, facilitating the adsorption of the intercalated protons; and further, B 2p‐Ti 3d hybridized band sits closer to the Fermi energy than that of C 2p bands, which bridges the energy gap for electron transfer in the pseudo‐capacitive reaction. With synergy of all these effects, the novel B‐V‐MXene compact electrodes can deliver the previously unmatched high volumetric capacitances of 807 F cm −3 at 1,000 mV s −1 and 1,815 F cm −3 at 5 mV s −1 , with excellent cycle stability over 10,000 cycles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xy发布了新的文献求助10
1秒前
曾哥帅发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
核桃发布了新的文献求助10
3秒前
lidinf发布了新的文献求助10
3秒前
yangbo666发布了新的文献求助10
4秒前
蜜桃乌龙完成签到,获得积分20
4秒前
zhuyanqi完成签到,获得积分10
5秒前
5秒前
xy完成签到,获得积分10
6秒前
QQQ11发布了新的文献求助10
6秒前
ANCY发布了新的文献求助30
6秒前
cc发布了新的文献求助10
7秒前
111发布了新的文献求助10
7秒前
7秒前
科研通AI6应助可爱的芷云采纳,获得10
7秒前
wencan发布了新的文献求助10
8秒前
9秒前
糖焗小馒头完成签到,获得积分10
9秒前
优美凡白发布了新的文献求助10
9秒前
无花果应助li采纳,获得10
10秒前
雪白依云完成签到,获得积分10
10秒前
12秒前
12秒前
13秒前
clearlove发布了新的文献求助10
14秒前
辛勤寻凝发布了新的文献求助10
15秒前
爆米花应助111采纳,获得10
15秒前
淡然胡萝卜完成签到,获得积分10
16秒前
Xbox完成签到,获得积分10
16秒前
喵小喵完成签到,获得积分10
17秒前
17秒前
乐乐应助Accepted采纳,获得10
17秒前
zoe发布了新的文献求助10
18秒前
Mic应助yangbo666采纳,获得10
19秒前
菠萝发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5656628
求助须知:如何正确求助?哪些是违规求助? 4804442
关于积分的说明 15076544
捐赠科研通 4814884
什么是DOI,文献DOI怎么找? 2576051
邀请新用户注册赠送积分活动 1531356
关于科研通互助平台的介绍 1489936